Practical results of the Intel MIC / Xeon Phi project at CERN openlab

2nd Annual Concurrency Forum Meeting February 5th 2013

Andrzej Nowak, CERN openlab Based on the work of Sverre Jarp, Alfio Lazzaro, Julien Leduc, Andrzej Nowak, Klaus-Dieter Oertel, Liviu Valsan

CERN openlab

- CERN openlab is a framework for evaluating and integrating cutting-edge IT technologies or services in partnership with industry
- The Platform Competence Center (PCC) has worked closely with Intel for the past decade and focuses on:
 - many-core scalability
 - performance tuning and optimization
 - benchmarking and thermal optimization
 - teaching

DISCLAIMER

Our tests are based on pre-production MIC / Xeon Phi hardware and software

Brief history

Early access

- Work since MIC alpha (under RS-NDA)
- ISA reviews in 2008

Results

 3 benchmarks ported from Xeon and delivering results: ROOT, Geant4, ALICE HLT trackfitter

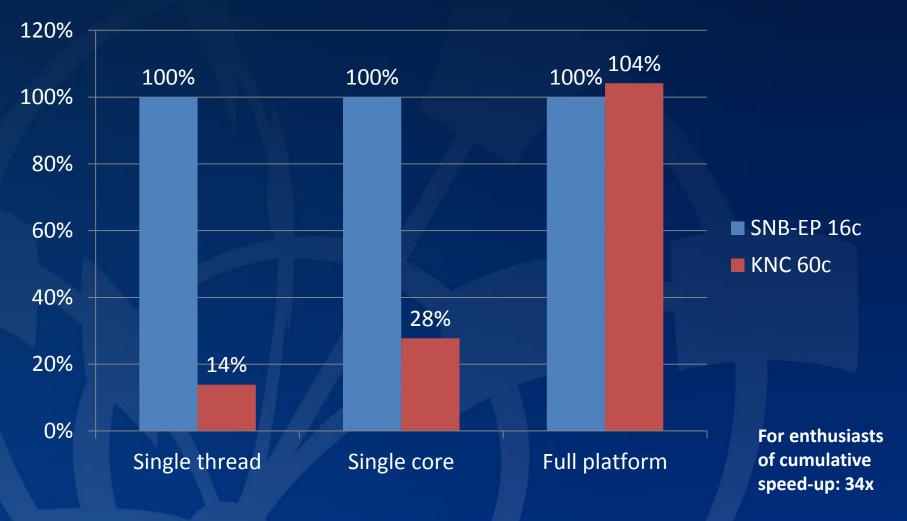
Expertise

- Understood and compared with Xeon
- Post-launch dissemination

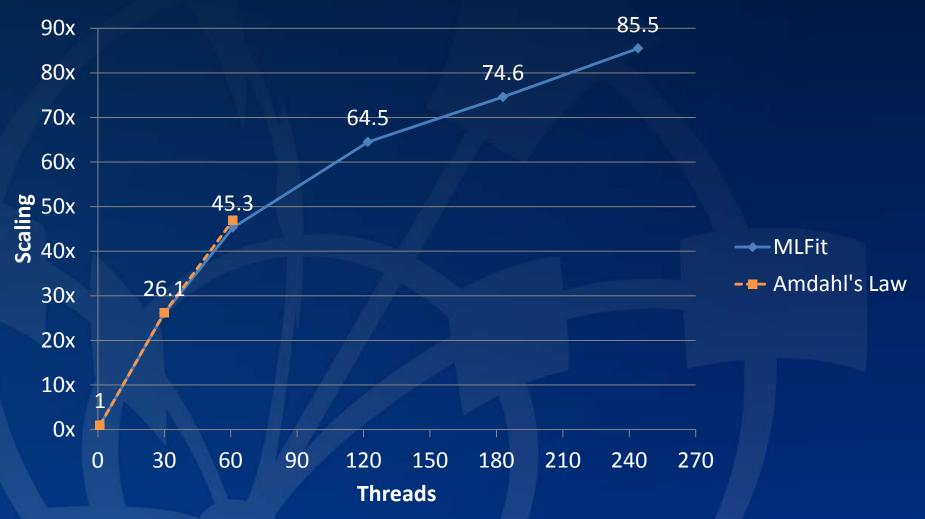
Ported applications

ALICE/CBM track fitter prototype

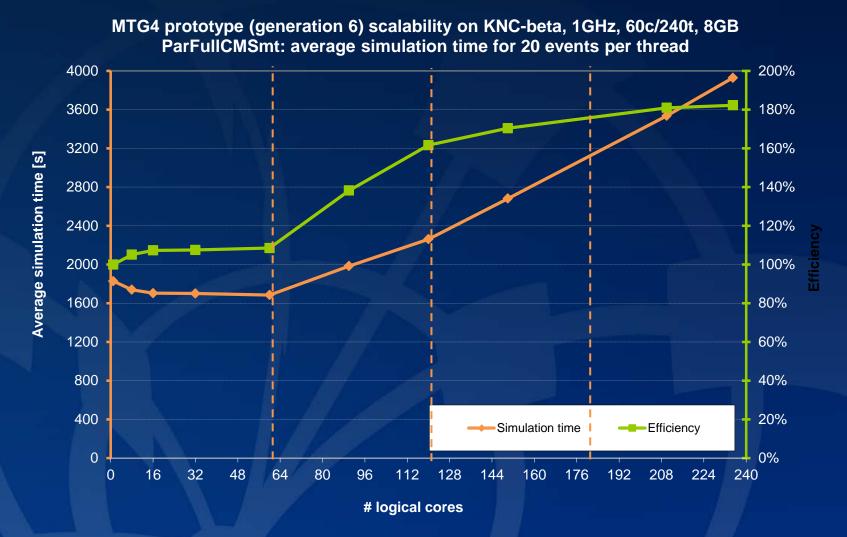
- Threaded
- Explicitly vectorized with a VC-like technology
- MLFit
 - Threaded (pthreads, MPI, OpenMP, TBB)
 - Vectorized (Cilk+)
- Early multi-threaded Geant4 prototype
 - Threaded (pthreads)
 - No vectorization
- Test hardware
 - Pre-production Knights Corner 61 cores @ 1.1 GHz
 - Sandy Bridge-EP 16 cores @ 2.7 GHz, Turbo on
 - Frequency unscaled results reported (1:1 comparison)

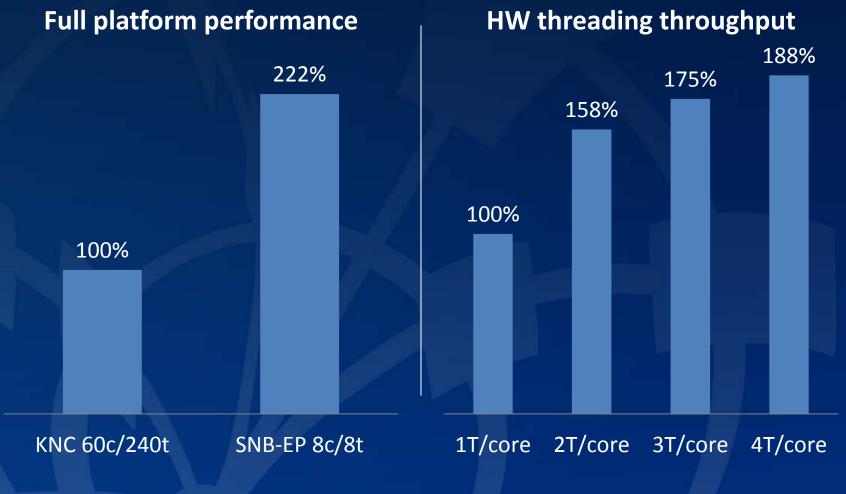

Porting – how much work?

	LOC	1 st port time	New ports	Tuning
TF	< 1'000	days	N/A	2 weeks
MLFit	3'000	< 1 day	< 1 day	weeks
MTG	2'000'000	1 month	< 1 day	< 1 week

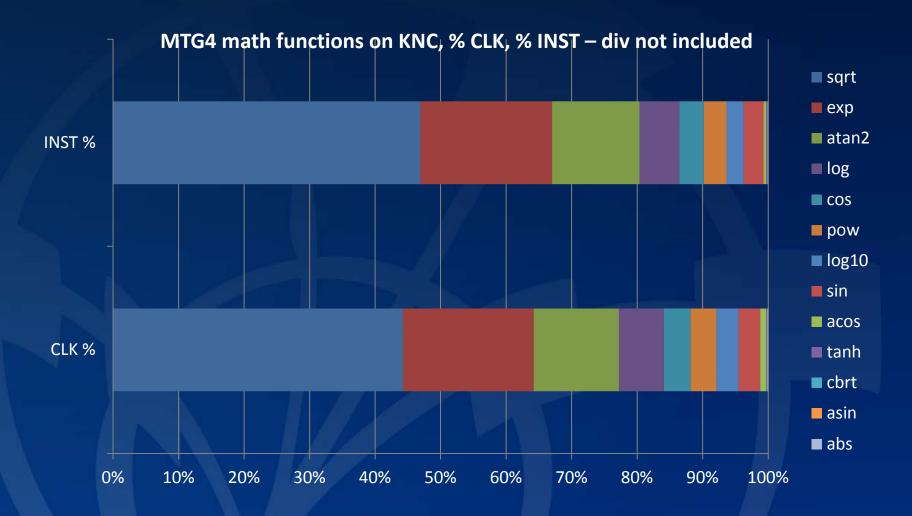

Track fitter throughput (higher is better)

MLFit performance OpenMP, no block splitting, higher is better


MLFit scaling (OpenMP)


MLFit threading performance

MTG4 scalability


MTG4 performance (higher is better, no vectorization)

MTG4 – example profile

Function / Call Stack	CLK %	INST %
sqrt	14.35%	22.16%
exp	6.47%	9.47%
atan2	4.22%	6.31%
CLHEP::RanluxEngine::flat	3.24%	5.60%
G4ElasticHadrNucleusHE::HadronNucleusQ2_2	3.01%	2.41%
G4PhysicsVector::Value	2.76%	0.95%
log	2.22%	2.85%
G4VoxelNavigation::LevelLocate	2.05%	0.66%
G4VoxelNavigation::ComputeStep	1.64%	1.10%
G4ClassicalRK4::DumbStepper	1.59%	2.96%
G4SteppingManager::DefinePhysicalStepLength	1.54%	1.39%
G4Navigator::ComputeStep	1.40%	1.01%

MTG4 math

Performance - summary

- Optimized applications surpass dualsocket Xeon performance
- Non-optimized performance reaches approximately a single Xeon socket
- Math function usage and performance are key vis a vis Xeon
- Compiler maturity still an open question

Multiple dimensions of performance

Dimension	Software	
Nodes	MPI	
Sockets	Threading and NUMA control	
Cores	Threading	
ILP	Efficient compilers and code	
Pipelining	Efficient compilers	
Vectors	Various options	

MIC software - scenarios

Native mode

workload runs entirely on a MIC system (networked via PCIe)

Arr. Tar Korit pressor advanta eperator advanta eperator Common with Inte. - Languages - C, C++, Fortran co - Intel developer to and high angle

1IC Architecture Program

and libraries
Coding and
optimization tech
Ecosystem support

ates Need for Dual Programming Archite

Offload

MIC as an accelerator where host gets weak

Balanced

MIC and host work together

Cluster

application distributed across multiple MIC cards (possibly including host)

MIC evolution – implications for HEP

- Small core evolution
- Hybrid mixes (Xeon + MIC)
- ISA convergence
- Will I/O latency or BW be a constraint?
- Other applications:
 - HPC-like code (e.g. QCD, CFD)
 - Triggering
 - High data throughput (ICE-DIP)

MIC evolution: ICE-DIP

- FP7 project looking for (amongst other things) efficient methods of accelerator/co-processor use
- Focus on data taking past LS1
- Of particular interest
 - Getting data into the platform
 - Getting data into the accelerator/co-processor
 - Efficient processing
 - Efficient distribution of results

Are you interested?

 We are always looking for interesting prototypes from the physics community

• We recommend:

- Data oriented design as opposed to only control flow oriented (OOO) – no vectorization, no fun
- Porting to the Intel compiler on Xeon first
- Thinking in multiple dimensions of performance vectorize, thread, limit memory usage
- Checking precision and math usage

THANK YOU Q & A

Questions? Andrzej.Nowak@cern.ch