
Autovectorisation in CMS: lessons 
learned, tools and techniques 

 
T. Hauth, V. Innocente, D. Piparo 
Annual Concurrency Forum Meeting 



•  Autovectorisation	



•  Vertex reconstruction in CMS	



•  Lessons learned and conclusions	



	



	



5/2/13 2 



•  “Vectorisation”: usage of CPU’s vector registers to speed up 

computations (simplest form of data parallelism)	



•  Several techniques and tools available: Cilk++, superword level 

parallelism (SLP), intrinsics, autovectorisation … 	



•  “Autovectorisation”: automatic procedure put in place by the 

compiler to transform regular C++ code of loops into machine code 

invoking vector instructions 	



–  Rather mature in GCC 4.7 and other compilers	



–  Maximum portability (MIC, ARM): the compiler does all the work	



	



	


5/2/13 3 



It’s necessary to “help” the compiler. Some general guidelines:	



•  Use countable loops (number of iterations known at runtime before start)	



•  Avoid non-contiguous memory access	



•  Single entry and exit	



•  Simple data dependencies	



–  E.g. avoid to read variable and write it in a subsequent iteration	



•  Do not call functions (unless actually inlined)	



•  Limit usage of branches (some may be tolerated: mask assignment)	



•  Prefer Structures Of Arrays (SOA) to Arrays Of Structures (AOS)	



… Keep it simple! Think in C, everything is an address in memory	



To obtain maximum performance:	



•  Use single precision instead of double	



–  nominally 2x faster, true for vectorisation in general)	



	

 5/2/13 4 



•  CMS reconstructs primary vertices’ z coordinate with deterministic 

annealing (DA)	



–  It took 3-5% of reconstruction time (a lot of money) 	



–  Existing implementation had several loops and C arrays filled with 

information from the existing data structures	



–  Perfect case for autovectorisation!	



5/2/13 5 



•  DA uses exp function	



–  First, calls factorised out of the loops	



–  Then, an inline, approximate and autovectorisable exp function 

implemented	



•  Results identical to scalar version:	



–  This particular algorithm is forgiving, not guaranteed in general 	



In production since more than a year	



5/2/13 6 

Version DA Runtime [s] Ratio 
Regular 29.64 1.0 

Autovectorised 19.96 0.74 
Autov.+ VDT exp 11.46 0.43 

Factors can be gained	



T Hauth et al .: Conf. Ser. 396 0520652012 J. Phys 



•  Autovectorisation is a powerful strategy to exploit vector units	


–  Rely purely on the compiler, highly readable code	



–  Complementary to other techniques	



•  Fragile: an unintended modification (an if, a call) can break it	



•  Effort required: mix of knowledge of the physics involved, codebase 
and programming skills	


–  For DA simple data structures already in place made life easier	



–  True in general for the non-trivial cases (basically absent in scientific code)	



•  Reducing precision (double to float) is advisable but not trivial	


–  Validation effort (and tools) needed not to jeopardise physics performance	



–  But: a factor 2 in speed is at stake	



•  Vectorisation pre-condition: simple data structures	


–  Re-write of the present widespread complex OO ones, prefer SOAs	



5/2/13 7 



•  Data structures do matter	



–  True in general for vectorisation	



–  Most prominent show-stopper	



•  Autovectorisation guarantees speed and maximum portability 

relying on the compiler only	



•  Its fragility suggests, if the problem allows it, to turn to specific 

libraries offering common building blocks (e.g. algebra, fitting, math)	



–  This does not exclude to use autovectorisation within libraries	



5/2/13 8 


