
ROOT, Threading and Parallelism

Fons Rademakers
CERN PH/SFT

Annual Concurrency Forum Meeting, Fermilab, 4/2/2013.

Current Status of Concurrency in ROOT
• PROOF and PROOF-Lite are available since 1997 and 2008

■ Actively used in analysis, active development program

• The ROOT thread interface classes (TThread et al) since 1997
■ Provide a platform independent interface to pthread, Solaris

threads and Win32 threads

• The ROOT implementations for Win32 (1996) and MacOS X (2012)
are multi-threaded (device graphics interface runs in a separate
thread and the command line input too)

• Several big locks provided (a sense of) thread safety
■ Big CINT lock - only one CINT instance per process
■ Big container lock
■ Big graphics lock

• But also made fine grain threading very difficult or impossible

Enhancing Concurrency in ROOT 6
• Thread safe cling

■ Multiple concurrent cling instances

• Lock free containers
• Concurrency in I/O

■ Multi threaded I/O
■ Asynchronous prefetching
■ Parallel merger

• Concurrency and vectorization in math
■ Possible introduction of the Vc matrix library, // histogramming
■ See Lorenzo’s talk

• Concurrency and vectorization in geometry
■ See Andrei’s talk

• Concurrent tasks
■ TTask+TThread and TTaskManager

Cling - The New Interpreter
• Replacing CINT by new cling: correctness, full C++
• Cling based on LLVM and Clang compiler libraries

■ “New” open source compiler suite, already default on OSX

• Compiler-grade C++11
• Best diagnostics on the market:
Error:	 Can’t	 call	 map<string,const	 char*,less<string>,allocator<const	
string,const	 char*>	 >	 >::operator[]((char*)0x255a9e8)	 in	 current	 scope	
err.C:19:
Possible	 candidates	 are...
(in	 map<string,const	 char*,less<string>,allocator<const	 string,const	
char*>	 >	 >)
Error:	 improper	 lvalue	 err.C:19

err.C:19:15:	 error:	 assigning	 to	 ‘mapped_type’	 (aka	 ‘const	 char	 *’)	 from
	 	 	 	 	 	 incompatible	 type	 ‘double‘
	 	 	 myMap[“A”]	 =	 12.3;
	 	 	 	 	 	 	 	 	 	 	 	 	 	 ^	 ~~~~

CINT

cling

Cling and Concurrency
• Cling released in July 2011

■ Fully functional C and C++11 interpreter
■ Just-in-Time compilation, i.e. always ACLiC
■ Still a few issues to solve, e.g. reloading of code

• Support multiple interpreter objects (c.f. multi-threaded context)
■ One execution engine per thread

• Separation of dictionary and execution engine
■ Needed for parallel I/O

Collection Classes
• Work on thread safety issues

■ Lock free containers (a la TBB)

• TThread replaced by C++11 threads or thin layer for backward
compatibility

• Focus on C++11 thread, atomicity, tld, concurrency support

Parallelism for I/O
• Parallel Merging via external process

• Support for one TFile per thread
■ Currently requires meta data (TClass, TStreamerInfo) to be fully build

before starting parallel operation
■ Planning to lifting this restriction in ROOT 6 (requires Cling)

• Internal use of spare cores
■ Ability to read multiple TBranch data in parallel
■ Top level branches can be uncompressed and un-streamed

independently
■ Prefetching of remote file content in a separate thread
■ Asynchronous write

Parallel Merging
• Existing solution:

■ Processing and storing the partial output on each local node and
then only at the end of the process, upload to the server and only
when all slaves are done, read all files on the server and write to a
single output file.

Final File!

Client!

Client!

Client!
Server!

Parallel Merging
• New TFile implementations:

■ TMemFile: a completely in-memory version of TFile.
■ TParallelMergingFile: a TMemFile that on a call to Write will upload

its content and reset the TTree objects.

• New solution:
■ Increase parallelism by

having the slaves start
uploading the TTree
clusters directly to the
server which immediately
starts saving them in the
final output file.

Final File!

Client!

Client!

Client!

Server!

Parallel Tasks
• TParallelTask

■ Basically a TTask combined with a TThread

• TParallelTaskManager
■ Management of sub tasks and sub managers
■ It can access the parent manager
■ Dependency management
■ Runs TParallelTasks in parallel or one-by-one depending on

dependencies

• Prototype implementation available

New PROOF Features
• Increasing number of sites and users deploying PROOF

• Deployment on ad-hoc PROOF clusters is made easy by PROOF-on-
Demand (PoD)

• The setup of a dedicated PROOF cluster including file management
and file access using xrootd has been made easy by the PEAC
package

• An extensive PROOF bench suite has been developed allowing to test
many aspects of PROOF related parameters (network, disk, cpu, etc.)

• Many stability improvements

PROOF Developments
• Improvement of the connection layer and of the work distribution

engine (packetizer)
• Result merging optimization (see also parallel tree merging in I/O)
• Improvement of memory management (in merging of results, in

sharing common data)
• Support for dynamic addition of workers
• Towards a fully-functional multi-master setup

■ Dataset management across clusters
■ Dynamic load-balancing across sub-masters
■ Dynamic re-organization of a set of workers in multi-tier structures

to scale up to O(1000) cores
■ Needed for extreme platforms like IBM’s BG/Q

PROOF Lite

PROOF Lite

PROOF Lite

PROOF Lite

PROOF Lite

Running on MacPro with
dual Quad Core CPU’s.

ROOT 6 2013 Release Plan
• Release ROOT v6-00 end of March
• Release ROOT v6-02 end of November
• As many v5-34 patch releases as needed

Conclusions
• ROOT had threading and parallelism support since its inception
• However, it was not engineered from the ground up for multi-

threading
• With ROOT 6 and Cling, we enter a new era
• Next development cycle is focused on

■ Adding finer grain thread safety
■ Multi-threading for I/O, math, fitting, geometry, ...

