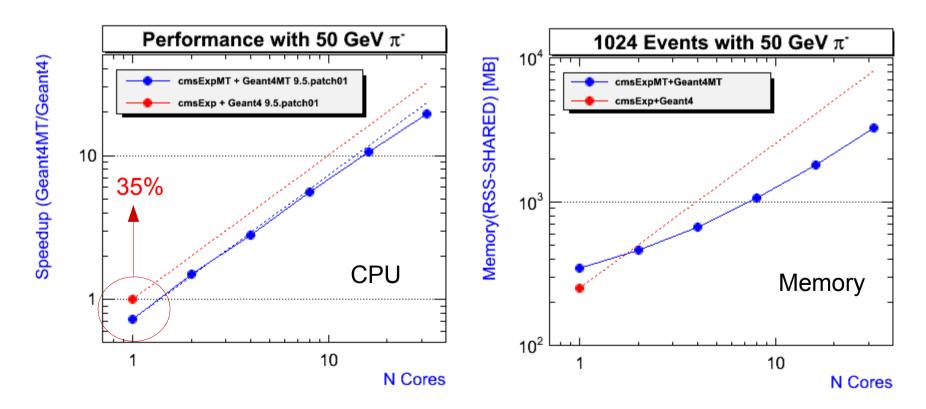
Performance Measurement Tools (for parallel application)

Philippe Canal, Daniel Elvira, Krzysztof Genser, Soon Yung Jun, Jim Kowalkowski, Marc Paterno Fermilab

Annual Concurrency Meeting February 4-6, 2013 Fermilab

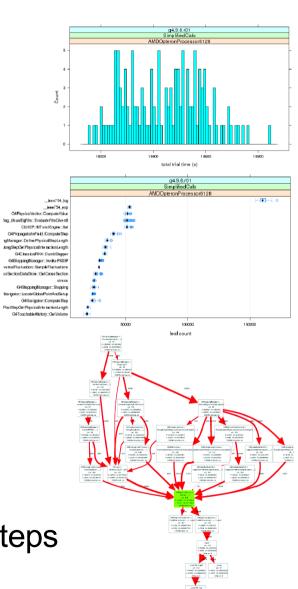
Introduction

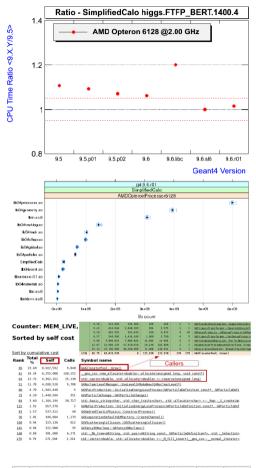
- Necessity of performance analysis
 - benchmarking/monitoring
 - efficient use of resources
 - optimization and tuning
- Emerging parallelism
 - parallel applications
 - heterogeneous systems
- Performance tools are essential
 - complexity of applications
 - diversity of architectures



Problem Statement

- Search tools and libraries for parallel applications
 - profiling multithreaded applications of Geant4
 - performance evaluation for GPGPU codes
- A user application: cmsExpMT (cms geom + b-field map)


Review of Geant4 Performance Profiling


Tools

- FAST (CPU)
- IgProf (memory)

Metrics

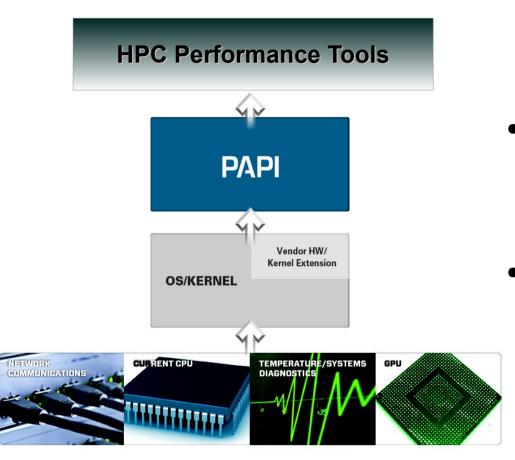
- time (version, physics)
- leaf counts (funs, libs)
- call path analysis
- heap (live, max, total)
- statm (vsize/rss)
- number of tracks and steps

Name	Particle	Mean	Sigma	Low	1/4Quad	Median	3/4Quad	High
1	Nstep e-	1.9214e+07	6.1294e+05	1.7891e+07	1.8846e+07	1.9196e+07	1.9663e+07	2.0736e+07
2	Nstep e+	2.6696e+06	1.3309e+05	2.4400e+06	2.5659e+06	2.6553e+06	2.7668e+06	3.0220e+06
3	Nstep gamma	1.6601e+07	5.0588e+05	1.5485e+07	1.6303e+07	1.6598e+07	1.6969e+07	1.7838e+07
4	Nstep N	7.0410e+06	7.5337e+05	5.0027e+06	6.5169e+06	7.2666e+06	7.5037e+06	8.0701e+06
5	Nstep other	3.9299e+05	4.3769e+04	2.7979e+05	3.5370e+05	4.0674e+05	4.2379e+05	4.5151e+05
6	Nstep p	3.2549e+05	3.5179e+04	2.3170e+05	3.0530e+05	3.3502e+05	3.4787e+05	3.7748e+05
7	Nstep pi-	4.2773e+04	4.6553e+03	3.1341e+04	3.9691e+04	4.4302e+04	4.6106e+04	5.0434e+04
8	Nstep pi+	4.2990e+04	4.7467e+03	2.9472e+04	3.9956e+04	4.4154e+04	4.6512e+04	4.9173e+04
9	Ntrack e-	1.4359e+07	4.3076e+05	1.3392e+07	1.4117e+07	1.4360e+07	1.4676e+07	1.5402e+07
10	Ntrack e+	3.6313e+05	1.3851e+04	3.3542e+05	3.5306e+05	3.6146e+05	3.7300e+05	3.9866e+05
11	Ntrack gamma	4.4820e+06	1.5189e+05	4.1621e+06	4.3837e+06	4.4732e+06	4.5919e+06	4.8610e+06
12	Ntrack N	2.1883e+05	2.3542e+04	1.5538e+05	2.0211e+05	2.2634e+05	2.3322e+05	2.5154e+05
13	Ntrack other	2.1537e+05	2.2964e+04	1.5382e+05	1.9906e+05	2.2243e+05	2.2942e+05	2.4733e+05
14	Ntrack p	8.5583e+04	9.1407e+03	6.0811e+04	7.9987e+04	8.8626e+04	9.1229e+04	9.8422e+04
15	Ntrack pi-	3.0006e+03	3.3441e+02	2.1540e+03	2.7600e+03	3.1005e+03	3.2040e+03	3.4680e+03
16	Ntrack pi+			2.2400e+03				

Metrics for Parallel Applications

- Multithreaded applications
 - speedup, scalability
 - memory (cache miss, TLB miss, coherence)
 - communication
 - I/O
- Platform dependence
 - NUMA
 - distributed memory models

- GPU applications
 - memory throughput
 - arithmetic intensity
 - occupancy vs. latency
 - ILP vs. TLP
 - locality (spatial/temporal)

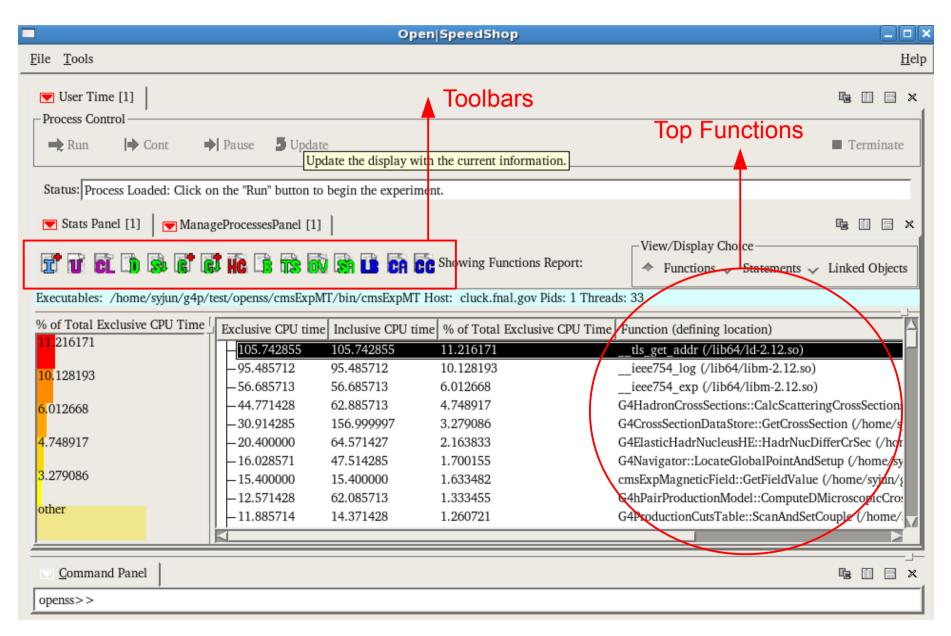

Performance Tool Requirement

- Support parallelism and multi-threaded applications
- Open source (support Linux)
- Transparent instrumentation (applicable on binaries)
- Light time overhead and precision of measurement
- Advanced analysis (tracing, callgraph)
- Easy to use, but extensible
- Documentation and support

Performance Tools: A Short List

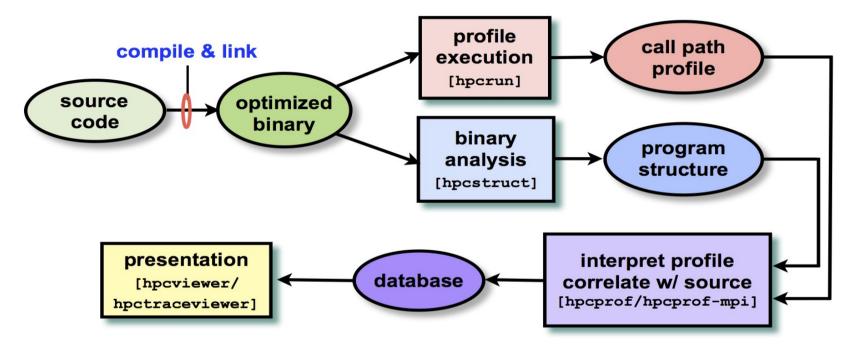
- Community infrastructures:
 - PAPI and MuMMI (UTK)
 - Paradyn (DynInst, MRNet) (UW, UMD)
- Integrated tool kits:
 - HPCToolkit (Rice)
 - Open|SpeedShop (Krell)
 - TAU (Oregon)
 - nvvp (NVIDIA)
- Tracing tools:
 - Jumpshot (ANL)
 - Scalasca (Jülich)

PAPI (Performance API)

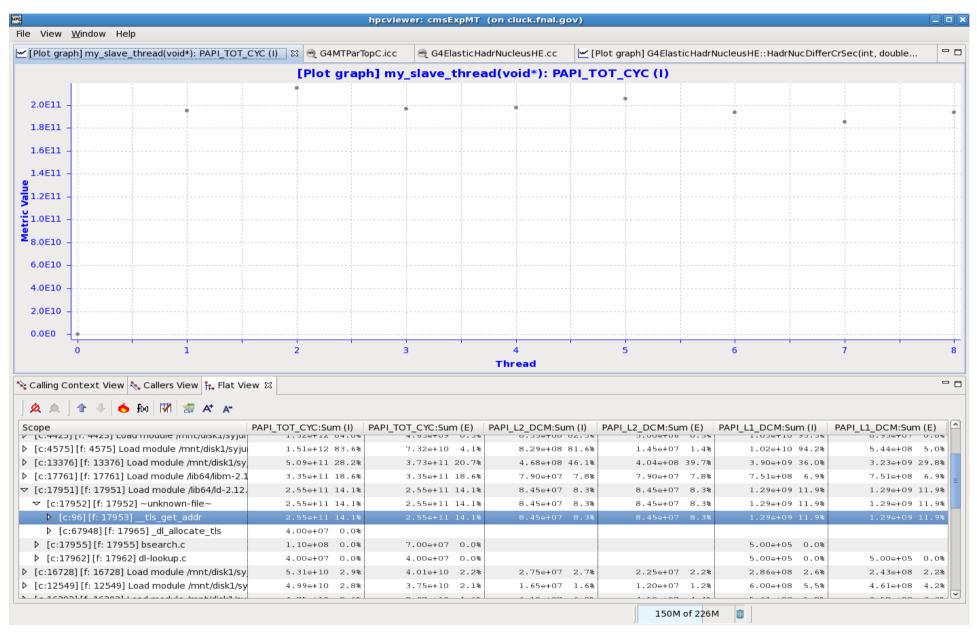


- A standard API to access hardware performance counters
- Relation between software performance and processor events
- Event metrics: platform specific metrics, cache hit/miss, Flops, power consumption (MuMMI)

Open|Speedshop


- Comprehensive performance analysis for sequential, multithreaded, and MPI applications
- The base functionality includes
 - sampling experiments
 - support callstack analysis
 - hardware performance counters
 - multi-threaded, MPI profiling and tracing
 - floating point exception analysis
- GUI and CLI (command line instruction)
- Almost ready to support GPU (95%) and MIC (if funded)

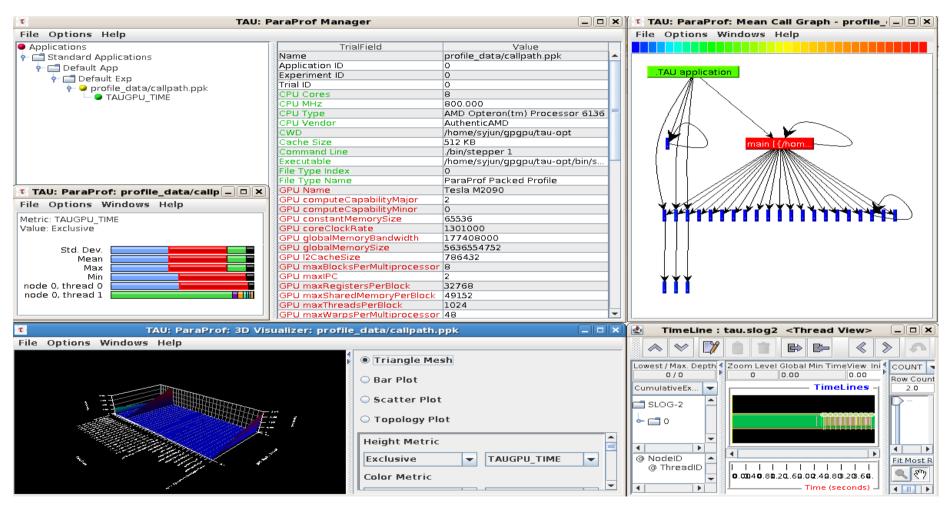
Default View and Stats Panel


HPCToolkit

Overview of HPCToolkit tool's work flow (from manual)

- Code centric view, GUI and text-base flat profile
- Supporting performance analysis of heterogeneous architecture (hybrid CPU/GPU)

HPCToolkit: hpcviewer

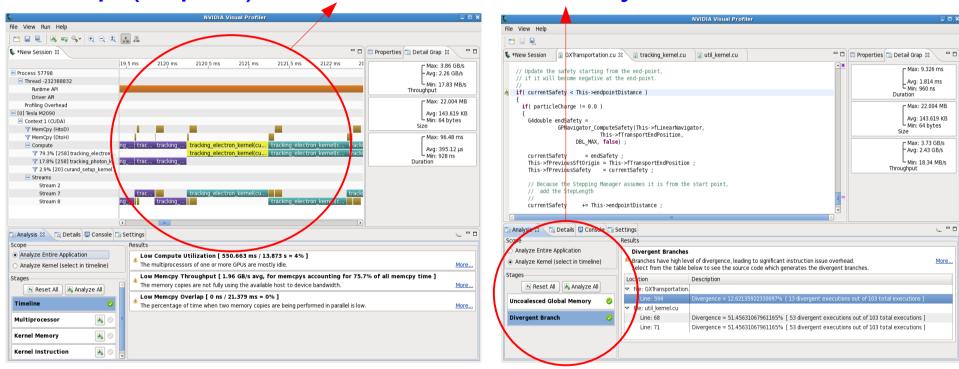


TAU (Tuning Application Utilities)

- Dynamic, compiler based, source based Instrumentation
- Analysis tools
 - ParaProf
 - PerfExplorer
 - Tracer (Jumpshot, vampir)
- Various built-in graphical presentations
- Capable to measure performance of GPU with cuda/openCL
- Disadvantage: compiler/source-based instrumentation

TAU for CUDA/openCL?

Test tau with cupti on a Runga-Kutta stepping algorithm



Provides general profiling information (H2D, kernel, D2H), but no details for 'inside' device codes

NVIDIA GPU Tools

CUPTI, NVML, occupancy calculator

nvvp (nvprof): timeline, kernel analysis with source

No good way to measure exclusive time for each device function

Other Tools: Another Short List

- Community Infrastructure and libraries
 - CBTF (Component Based Tool Framework) (Krell)
 - GPTL (General Purpose Timing Library) (ORNL)
 - gperftools (Google Peformance Tools)
- Integrated Tools
 - Intel: VTune Amplifer, Cluster/Parallel Studio (License)
 - AMD: CodeAnalyst, APP Profiler/Kernel Analyzer (openCL)
 - IBM: HPMToolkit
- Tracing Tools
 - KOJAK (OPARI,EPILOG,EARL,EXPERT/CUBE)
 - Vampir (License)

Summary

- Profiling serial and parallel codes is a critical step in assessing the efficiency of software development
- Various tools and libraries are available for performance profiling and analysis
- Performance analysis is domain specific (domain knowledge, architecture, programing models)
- Collaborating with ASCR institutes
 - Bob Lucas, Pedro Diniz (ISI)
 - Rob Fowler, Paul Ruth (RENCI)
 - Boyana Norris (ANL)