7°\
Superb
o/

A Parallel Framework for the
SuperB Super Flavor Factory

Stefano Longo

on behalf of the SuperB Computing Group
Annual Concurrency Forum Meeting - 04 Feb 2013

SuperB - Main facts sfn'lraﬁ:
) -

- SuperB is a next-generation high-luminosity e+ e~ collider
facility designed to operate primarily at the Y(4S)

- SuperB carries on the science work of BaBar

Goal: evidence of physics D ne—
beyond SM (precision studies/ o e, T™/ Linear colliders

0* .l =2
rare decays) ;

¢ o
<« (K s

BER v +
Factorig/ / N o
B i
o ik A

. LEP
CESR Ris2 .
VEPP2000 . LEP LEP

Location: Cabibbo Laboratory,
Tor Vergata, Rome (IT)

-

Luminosity (crif s ')

3

Design luminosity : 103%cm-2s-!

3

_] \r, BErc va:im ;Em.;....‘. 10"
(15 ab~! per year) i I '
_ _ B-Factories
Integrated luminosity: 75 ab! B d.Factorias ape
(5 years of science run) : Future Colliders ||
4.18 GeV (e”) x 6.7 GeV (e") 107 — ..---7-:“- e
c.m. Energy (GeV)

Use crab waist technique

S. Longo - Annual Concurrency Forum Meeting 2013 - FNAL

SuperB - Computing @

- SuperB is expected to produce as much data as the LHC
experiments
O(600PB) during its lifetime
- It is clear that the computing challenge is strategic
And can benefit from experience gained by LHC experiments

CPU (kHEPSpec) 2016 2017 2018 2019 2020 2021 2022
Physics analysis of Data 54 205 421 638 854 1.070 1.286
Physics analysis of MC 50 222 457 601 025 1.159 1.303
Beam data reconstruction 66 186 265 265 265 265 265
Montecarlo generation and processing 210 588 840 840 840 840 840
Skimming of data 31 86 122 122 122 122 122
Skimming of MC 30 84 120 120 120 120 120
Reprocessing of beam data (previous years) 0 66 252 517 782 1.048 1.313
Regeneration of MC (Previous years) 0 210 798 1.638 2.478 3.318 4.158
Reskimming of reprocessed data 0 46 174 358 542 725 909
Reskimming of reprocessed MC 0 45 171 351 531 711 801
CPU Total 449 1.738 3.621 5.540 7.459 0.378 11.297

Need for a framework able to exploit efficiently the computing
power of modern many-core systems!

S. Longo - Annual Concurrency Forum Meeting 2013 - FNAL

. : . . r°\
Simulation Application SuperB
—

SuperB detector simulation (FastSim) was used as a testbed to produce
a «proof of principles» application, using the BaBar Framework (1995)

Modular application with A 3-Module, N-fvent Job

hundreds of analysis modules (Input) (Output)
available tO the user Hodule A Hodule B Hodule C
Dynamic simulation setup done

via configuration files (TC|) Start — beginJob()4—— |beginJob () beginJob()—‘
The configuration sets the

modules execution sequence and

parameters N tire event() event () event () —]
Event structure employed to 1
encapsulate every information L

regarding a Simulated event endJob () endJob () endJob (> — [Finish

S. Longo - Annual Concurrency Forum Meeting 2013 - FNAL

. 7\
Analysis SuperB

From the analysis point of view we had:

- Studied the dependencies - based on a
producer/consumer schema - of each module.

- Designed an algorithm that schedules module
execution based on module dependencies.

- Developed a simulator to study speedup and CPU
usage efficiency of our solution.

Using module-level parallelism, we have determined
that the execution speed-up gained is just 1.43Xx

S. Longo - Annual Concurrency Forum Meeting 2013 - FNAL

Code Analysis sﬂ;ﬁ:
) -

Analyzing Fastsim code we have found that:

CPU consumption is really Name | CPU Usage

unbalanced between modules PmcReconstruct 61.6%
. There is a huge usage of Fortran FPmeSimulate 20.2%
code, mainly during event BtaLoadMcCandidate 4.1%
generation/simulation (EvtGen, PacTrkClusterMatch 3.5%
pythia, photos, etc.) GfiEvtGen 1%

- A single container (Event) is employed to carry all the
information inside the analysis pipeline

Event container used in a non proper way (e.g. for
communication between objects, even if no event exists)

Diffuse usage of static methods employed both to
communicate among objects and as a form of «optimization»

S. Longo - Annual Concurrency Forum Meeting 2013 - FNAL

. '\
Parallel environment S{IErIB

Several parallel/thread libraries were investigated to search for
the best match with our model (OpenMP, Cilk+, etc.)

We have decided to employ Intel Threading Building Blocks (TBB),
for its feature. In particular:

Flow graph: allows to use 3 levels of parallelism (between
events, inside event and inside algorithms, at the same time)

Concurrent containers: provides several thread safe containers
to repleace stdlib ones

Concurrent memory allocation: support concurrent heap
allocators, to be used instead of standard new/malloc/etc.

- Task synchronization: provides several signaling mechanism
between tasks (both wrapping O.S. calls or TBB specific)

LA

\\\\\\\

S. Longo - Annual Concurrency Forum Meeting 2013 - FNAL

N\

Scheduling Model [1/2] Supor

Legacy code was modified in such a way that each module

Declares what data (products) have to be present inside the
Event to start the execution

Declares what products it adds to the Event
Has a lock to prevent concurrent execution

From those information we can produce a dependencies graph,

a tree where each node represent an analysis module and each
arc a product.

A path from the root to a node is the list of products needed to
start the execution of that node.

This schema allows scheduling based on data dependencies

S. Longo - Annual Concurrency Forum Meeting 2013 - FNAL

N\

Scheduling Model [2/2] Supor

This is an example of FastSim dependencies graph

Unreadable, but should give an idea m

of the problem complexity Arcs 1048

S. Longo - Annual Concurrency Forum Meeting 2013 - FNAL

Prototype Measures [1/3] @

First set of measurements were carried out using module level
parallelism only (same setup as legacy code analysis)

Speedup with module-level parallelism
1.8

I Speedip ——

- Events are processed one at a
time

- Different modules can be
executed concurrenlty on the
same event (pipeline-like) :

Lar

lAr

Lir

This configuration had
confirmed the analysis results

- Speedup upper limit ~1.4x

S. Longo - Annual Concurrency Forum Meeting 2013 - FNAL

Prototype Measures [2/3] @

Second set of measurements were performed introducing also
parallel event processing (more events processed concurrently)

Benchmark setup L
System: 2 way, 24 cores | , | -
CPU: AMD Opteron 6238 . ek
RAM: 3 GB per core

Parallelization schema:
- parallel_for: several analysis ! | ‘ ‘ | N f

sequences executed
concurrently, modules executedm
serially inside sequences il
flow_graph : dependencies wp L L _
graph implementation ,

L 1 1 1 1
a 208 480 600 800 1608 1208
Tine {secs)

S. Longo - Annual Concurrency Forum Meeting 2013 - FNAL

Prototype Measures [3/3] SuperB

A last set of measurements were devoted to the application
memory footprint

Be n C h m a r k S et u p R3S nenory usage (28,000 events processed)
- System: 1 way, 4 cores (HT) s —
- CPU: Intel Xeon E5630

- RAM: 3 GB per core

Comparison

- 4 concurrent serial execution
Fastsim (5000 events each)

©] pa/’a//E/_fOl’ FaStS|m 208000 .
processing 20000 events Note: the slope of the parallel versions is due

. 1 flow graph Fastsim W% to a memory issue introduced with the last

o release of the software. Will be fixed soon.
processing 20000 events : . . ‘ . .

400068 [

300000

RS5S5 {kiloBytes)

] 200 408 660 [il:L:] jLLL] 1200

Tine {secs)

S. Longo - Annual Concurrency Forum Meeting 2013 - FNAL

Algorithm Parallelism [1/4] s’mﬁs

. A further step was the introduction of the
parallelism at algorithm level

- We choose one event generator module - EvtGen -
as the test case

- Inside EvtGen, the target algorithm choosen was
the computation of the hadronic mass spectra

. Module parallelization was done using a “parallel
for” paradigm

- Main goal was to check the usabilty of all the three
parallelism levels at the same time

S. Longo - Annual Concurrency Forum Meeting 2013 - FNAL

Algorithm Parallelism [2/4] s’mﬁl

Threads usage: comparison of serial VS parallel execution

T T T T T T T T T T T ™T T T an‘l‘lTn‘l‘ITn‘l'I‘rm‘lTn‘I‘lﬂ‘m‘lTﬁ‘l‘l‘rI‘mTrm
16:05 165s 1?:05 1755 180s Benchmark setup 1425 1435 144s 1455 148s
P ' T System: 2 way, 24 cores [T ok
e ati s CPU: AMD Opteron6238 L P
ddiad L sl RAM: 3GB per core e — e
Ll L I.I : el amal
aad e e L P T
| ol 077 — |
T Loa [@ Wl ! |
L,J bl il & e - J o
b Lo dial [& D L
. i ‘ Serial version ‘ [ey
TR) - 07— |l
e i el Al s a 16.5 SEC _L__l_ L L
ol ¥y ™ T
I I T LA,
et Lo (N FTWE
(TR ol [T — A0k
e . I 1 Ll
i b | 1.1 | B Ll
Ut dle ol ey g |=EET
(YR DY i —il I el
wasii bl sadul) . I haide
Parallel version e =
||||| i alall = 3.5 EEC Ll.
i ~ Ao

Mgo - Annual Concurrency Forum Meeting 2013 - FNAL

Algorithm Parallelism [3/4] sf;;aﬁ:

Putting all together: is FastSim using all the available
parallelism levels at the same time?

(gdb) thread apply all where full
[...]
Thread 14 (Thread 0x7fffe0a49700 (LWP 5326)):
#7 0x0000000000ec8e2b in ModuleNode::operator()
eventlD = 1132
[...]
Thread 7 (Thread 0x7fffe224f700 (LWP 5320)):
#8 0x0000000000ec8e2b in ModuleNode::operator()
eventlD = 1126
[-]
Thread 4 (Thread Ox7fffdbfff700 (LWP 5316)):
#23 0x0000000000ec8e2b in ModuleNode::operator()
eventID = 1130
[-]
Thread 1 (Thread Ox7ffff7e53720 (LWP 5312)):
#7 0x0000000000ec8e2b in ModuleNode::operator()
eventID = 1133

S. Longo - Annual Concurrency Forum Meeting 2013 - FNAL

Algorithm Parallelism [4/4] s’mﬁs

(gdb) thread apply all backtrace
[...]
Thread 23 (Thread 0x7fffd97f5700 (LWP 5336)):
#5 0x0000000000d52ddb in PmcSimulate::event
[...]
Thread 16 (Thread Ox7fffdb3fc700 (LWP 5329)):
#5 0x000000000232bb87 in RacRandomControl::event
[...]
Thread 4 (Thread Ox7fffdbfff700 (LWP 5316)):
#21 0x0000000002311a48 in GfiGenerator::event

L.]

(gdb) info threads

[..]

* 6 Thread 0x7fffe1la4d700 (LWP 5321) LoopClass::operator()
5 Thread 0x7fffe2650700 (LWP 5318) LoopClass::operator()
4 Thread Ox7fffdbfff700 (LWP 5316) LoopClass::operator()

3 Thread 0x7fffe2a51700 (LWP 5317) LoopClass::operator()
2 Thread 0x7fffe2e52700 (LWP 5315) LoopClass::operator()

[]

S. Longo - Annual Concurrency Forum Meeting 2013 - FNAL

Conclusions [1/2] s’mﬁ:

From the prototype we have defined a computing model where:
An analysis is defined as a set of modules
Each module has to be independent from others
A module must define the products it needs to run
A module must define what it produces during its execution

Measurements done on the prototype demostrates that

The model can be used to reduce the memory footi))rint (as an
alternative to run N separate analysis, with N=number of cores)

The scheduling schema may be employed to efficiently use
systems with large number of cores

Event, module and algorithm parallelisms can be emploied
simultaneously

Last but not least, measurements on the prototype were taken
using a production setup —-> The prototype works!

S. Longo - Annual Concurrency Forum Meeting 2013 - FNAL

Conclusions [2/2] s’mﬁ:

Some general software development guidelines were defined
based on the framework analysis and prototype:

Fortran code has to be removed
- Widespread usage of static objects has to be avoided

Each module has to be more OOP-compliant, in particular for
what concern incapsulation

- Auxiliary data structures (Event container, etc.) have to be
developed to allow concurrent access to data

For some analisis algorithms a code rewriting can provide a
massive parallelism level

[Old] Future plan:
Ready to formalize specifications for analysis modules.
Ready to start the development of a production framework

S. Longo - Annual Concurrency Forum Meeting 2013 - FNAL

7°\
Superb

Thanks
For your attention!

