

• SuperB is a next-generation high-luminosity e+ e- collider
facility designed to operate primarily at the Υ(4S)

• SuperB carries on the science work of BaBar

2/19 S. Longo – Annual Concurrency Forum Meeting 2013 – FNAL

• Goal: evidence of physics
beyond SM (precision studies/
rare decays)

• Location: Cabibbo Laboratory,
Tor Vergata, Rome (IT)

• Design luminosity : 1036cm-2s-1
(15 ab-1 per year)

• Integrated luminosity: 75 ab-1
(5 years of science run)

• 4.18 GeV (e-) x 6.7 GeV (e+)

• Use crab waist technique

• SuperB is expected to produce as much data as the LHC
experiments
• O(600PB) during its lifetime

• It is clear that the computing challenge is strategic
• And can benefit from experience gained by LHC experiments

3/19

Need for a framework able to exploit efficiently the computing
power of modern many-core systems!

S. Longo – Annual Concurrency Forum Meeting 2013 – FNAL

SuperB detector simulation (FastSim) was used as a testbed to produce
a «proof of principles» application, using the BaBar Framework (1995)

4/19

• Modular application with
hundreds of analysis modules
available to the user

• Dynamic simulation setup done
via configuration files (Tcl)

• The configuration sets the
modules execution sequence and
parameters

• Event structure employed to
encapsulate every information
regarding a simulated event

S. Longo – Annual Concurrency Forum Meeting 2013 – FNAL

From the analysis point of view we had:

• Studied the dependencies – based on a
producer/consumer schema - of each module.

• Designed an algorithm that schedules module
execution based on module dependencies.

• Developed a simulator to study speedup and CPU
usage efficiency of our solution.

Using module-level parallelism, we have determined
that the execution speed-up gained is just 1.43x

5/19 S. Longo – Annual Concurrency Forum Meeting 2013 – FNAL

• CPU consumption is really
unbalanced between modules

• There is a huge usage of Fortran
code, mainly during event
generation/simulation (EvtGen,
pythia, photos, etc.)

6/19

• A single container (Event) is employed to carry all the
information inside the analysis pipeline

• Event container used in a non proper way (e.g. for
communication between objects, even if no event exists)

• Diffuse usage of static methods employed both to
communicate among objects and as a form of «optimization»

Name CPU Usage

PmcReconstruct 61.6%

PmcSimulate 20.2%

BtaLoadMcCandidate 4.1%

PacTrkClusterMatch 3.5%

GfiEvtGen 1%

Analyzing Fastsim code we have found that:

S. Longo – Annual Concurrency Forum Meeting 2013 – FNAL

Several parallel/thread libraries were investigated to search for
the best match with our model (OpenMP, Cilk+, etc.)

We have decided to employ Intel Threading Building Blocks (TBB),
for its feature. In particular:

• Flow graph: allows to use 3 levels of parallelism (between
events, inside event and inside algorithms, at the same time)

• Concurrent containers: provides several thread safe containers
to repleace stdlib ones

• Concurrent memory allocation: support concurrent heap
allocators, to be used instead of standard new/malloc/etc.

• Task synchronization: provides several signaling mechanism
between tasks (both wrapping O.S. calls or TBB specific)

7/19 S. Longo – Annual Concurrency Forum Meeting 2013 – FNAL

Legacy code was modified in such a way that each module

• Declares what data (products) have to be present inside the
Event to start the execution

• Declares what products it adds to the Event

• Has a lock to prevent concurrent execution

From those information we can produce a dependencies graph,

a tree where each node represent an analysis module and each
arc a product.

A path from the root to a node is the list of products needed to
start the execution of that node.

This schema allows scheduling based on data dependencies

8/19 S. Longo – Annual Concurrency Forum Meeting 2013 – FNAL

This is an example of FastSim dependencies graph

9/19

Unreadable, but should give an idea
of the problem complexity

Nodes 743

Arcs 1048

S. Longo – Annual Concurrency Forum Meeting 2013 – FNAL

First set of measurements were carried out using module level
parallelism only (same setup as legacy code analysis)

10/19

• Events are processed one at a
time

• Different modules can be
executed concurrenlty on the
same event (pipeline-like)

This configuration had
confirmed the analysis results

• Speedup upper limit ̴1.4x

Speedup with module-level parallelism

S. Longo – Annual Concurrency Forum Meeting 2013 – FNAL

Second set of measurements were performed introducing also
parallel event processing (more events processed concurrently)

11/19

Benchmark setup
• System: 2 way, 24 cores
• CPU: AMD Opteron 6238
• RAM: 3 GB per core

Parallelization schema:
• parallel_for : several analysis

sequences executed
concurrently, modules executed
serially inside sequences

• flow_graph : dependencies
graph implementation

S. Longo – Annual Concurrency Forum Meeting 2013 – FNAL

A last set of measurements were devoted to the application
memory footprint

12/19

Note: the slope of the parallel versions is due
to a memory issue introduced with the last
release of the software. Will be fixed soon.

Benchmark setup
• System: 1 way, 4 cores (HT)
• CPU: Intel Xeon E5630
• RAM: 3 GB per core

Comparison
• 4 concurrent serial execution

Fastsim (5000 events each)
• 1 parallel_for Fastsim

processing 20000 events
• 1 flow_graph Fastsim

processing 20000 events

S. Longo – Annual Concurrency Forum Meeting 2013 – FNAL

13/19

• A further step was the introduction of the
parallelism at algorithm level

• We choose one event generator module – EvtGen -
as the test case

• Inside EvtGen, the target algorithm choosen was
the computation of the hadronic mass spectra

• Module parallelization was done using a “parallel
for” paradigm

• Main goal was to check the usabilty of all the three
parallelism levels at the same time

S. Longo – Annual Concurrency Forum Meeting 2013 – FNAL

14/19

Threads usage: comparison of serial VS parallel execution

S. Longo – Annual Concurrency Forum Meeting 2013 – FNAL

15/19

Putting all together: is FastSim using all the available
parallelism levels at the same time?

(gdb) thread apply all where full

[. . .]

Thread 14 (Thread 0x7fffe0a49700 (LWP 5326)):

 #7 0x0000000000ec8e2b in ModuleNode::operator()

 eventID = 1132

[. . .]

Thread 7 (Thread 0x7fffe224f700 (LWP 5320)):

 #8 0x0000000000ec8e2b in ModuleNode::operator()

 eventID = 1126

[. . .]

Thread 4 (Thread 0x7fffdbfff700 (LWP 5316)):

 #23 0x0000000000ec8e2b in ModuleNode::operator()

 eventID = 1130

[. . .]

Thread 1 (Thread 0x7ffff7e53720 (LWP 5312)):

 #7 0x0000000000ec8e2b in ModuleNode::operator()

 eventID = 1133

[. . .]

S. Longo – Annual Concurrency Forum Meeting 2013 – FNAL

16/19

(gdb) thread apply all backtrace

[. . .]

Thread 23 (Thread 0x7fffd97f5700 (LWP 5336)):

 #5 0x0000000000d52ddb in PmcSimulate::event

[. . .]

Thread 16 (Thread 0x7fffdb3fc700 (LWP 5329)):

 #5 0x000000000232bb87 in RacRandomControl::event

[. . .]

Thread 4 (Thread 0x7fffdbfff700 (LWP 5316)):

 #21 0x0000000002311a48 in GfiGenerator::event

[. . .]

(gdb) info threads

[. . .]

* 6 Thread 0x7fffe1a4d700 (LWP 5321) LoopClass::operator()

 5 Thread 0x7fffe2650700 (LWP 5318) LoopClass::operator()

 4 Thread 0x7fffdbfff700 (LWP 5316) LoopClass::operator()

 3 Thread 0x7fffe2a51700 (LWP 5317) LoopClass::operator()

 2 Thread 0x7fffe2e52700 (LWP 5315) LoopClass::operator()

[. . .]

S. Longo – Annual Concurrency Forum Meeting 2013 – FNAL

From the prototype we have defined a computing model where:
• An analysis is defined as a set of modules
• Each module has to be independent from others
• A module must define the products it needs to run
• A module must define what it produces during its execution

Measurements done on the prototype demostrates that
• The model can be used to reduce the memory footprint (as an

alternative to run N separate analysis, with N=number of cores)
• The scheduling schema may be employed to efficiently use

systems with large number of cores
• Event, module and algorithm parallelisms can be emploied

simultaneously

Last but not least, measurements on the prototype were taken
using a production setup -> The prototype works!

17/19 S. Longo – Annual Concurrency Forum Meeting 2013 – FNAL

Some general software development guidelines were defined
based on the framework analysis and prototype:

• Fortran code has to be removed

• Widespread usage of static objects has to be avoided

• Each module has to be more OOP-compliant, in particular for
what concern incapsulation

• Auxiliary data structures (Event container, etc.) have to be
developed to allow concurrent access to data

• For some analisis algorithms a code rewriting can provide a
massive parallelism level

[Old] Future plan:

• Ready to formalize specifications for analysis modules.

• Ready to start the development of a production framework

18/19 S. Longo – Annual Concurrency Forum Meeting 2013 – FNAL

