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Goals

 Effective usage of modern CPU cores
 Reconstruction: Come up with a parallel solution, which would improve 

event processing throughput of the production nodes wrt current mode of 
operation (running many serial reconstructions simultaneously)

➔ ATLAS Reconstruction is memory-hungry. The parallel solution must 
allow memory sharing between event processors

 Analysis: Speedup interactive analysis jobs by processing different input 
files in parallel instead of going over them serially, one at a time

 We want to achieve this goal with minimal changes to the existing 
code

 No changes at all in the user code
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Process-based parallelism

Our present mode of operation
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● Original implementation of the AthenaMP lacks design in general, 
which makes it hard to add new features

● Output file merging, which was an inseparable part of every 
AthenaMP job, makes it rather inefficient
– Short jobs: substantial fraction of the overall wall time spent in merging
– Long jobs: by merging N full size outputs we make one huge resulting

file – difficult for the Production System to digest

Need of a new implementation
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● Features
– New infrastructure written completely in C++

– Inter-process communications and process management is 
handled by a custom library developed in ATLAS

● Uses boost interprocessing: shared queues, shared memory 
segments

– Uses components from GaudiMP: IoComponentMgr

– Follows Gaudi component model: various event scheduling 
strategies in AthenaMP workers are implemented by specialized 
components (AlgTools)

● Should make it easier to plug in new functionalities

– Output file merging no longer considered the responsibility of the 
core AthenaMP

● Now it's up to the clients of AthenaMP to decide how to deal with the 
outputs made by AthenaMP workers processors

AthenaMP-2
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Event scheduling strategies: Shared Event Queue
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Event scheduling strategies: Input File Per Worker
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Sharing memory between processes

● Athena reconstruction of real data (RAWtoESD), 64bit, 500evt/job
● Profiling done with 'free ­m ­s 1'
● ~45% memory shared between worker processes in AthenaMP

P r e l i m i n a r y



Memory spikes

● AthenaMP-1 reconstruction of real data (RAWtoESD), 64bit, 50evt/worker
● Profiling done with 'free ­m ­s 1'
● Spikes can be cured by serializing workers' finalization without

sacrificing the overall job performance
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● Two series of recent tests with 64 bit AthenaMP-2 on the same 
hardware
– 12 CPU Core Westmere, Hyper-threading, 48GB memory
– In order to simulate 3GB/core a special “memory eater” utility was running 

on the machine bringing available memory limit down to 36GB

● Test #1
– Real data reconstruction (RAWtoESD), 500evts/job
– “Llightweight” (data quality monitoring algorithms disabled). ~2.2GB/job 

of physical memory 

● Test #2
– MC reconstruction (RDOtoESD), 250evts/job
– “Heavyweight” configuration. ~3.3GB/job of physical memory 

Results are preliminary!

Event throughput



Event throughput. Test #1

● ~10% gain in event throughput by using AthenaMP

P r e l i m i n a r y



Event throughput. Test #2

● ~20% gain in event throughput by using AthenaMP
● Workers' finalization was serialized in AthenaMP

P r e l i m i n a r y



Event throughput. Test #2

● Workers' finalization was not serialized in AthenaMP
● Memory spikes can have a visible effect on overall performance

P r e l i m i n a r y
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● By leveraging Linux fork and COW we achieve a significant 
optimization of the overall memory footprint of multiple Athena 
reconstruction jobs running on the same machine. 

● This optimization comes with no CPU overhead.

● It allows us to increase the number of parallel reconstruction jobs and 
by this way increase the overall event throughput.

● The exact performance gains depend on concrete job 
configuration and hardware resources
– The example included in this talks shows that the event throughput can 

be increased by at least 20% for the heavyweight reconstruction job 
on the 3GB/core machine

Summary
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● Various strategies for scheduling events to worker processes
– Single event (shared queue). Already exists
– Event chunks/clusters.
– Entire file. Prototype exists

● Output file sequencing and its usage in AthenaMP
– Cut output file when number of events reaches some predefined 

maximum
– Or group events by time-dependent conditions (luminosity blocks)

● Specialized I/O worker processes
– Shared reader for RAW data files. Already exists
– DataHeader/Token scatter for shared POOL reader.
– Shared writer.

● The last item is very important for further developments towards the 
event-level I/O: replacing files with events as work distribution unit, 
which is how ATLAS is considering to follow the Opportunistic 
Computing paradigm

Future developments
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