
Vakho Tsulaia
LBNL

Annual Concurrency Forum Meeting
FNAL, Feb-5, 2013

AthenaMP
Sharing memory between processes
 in ATLAS software using Linux COW

V. Tsulaia Feb-5, 20132

Contents

 Goals

 AthenaMP
➢ The concept and the main components

 News since previous Concurrency Forum Meeting
➢ Transition to the new implementation: AthenaMP-2

 Performance figures

 Future developments

V. Tsulaia Feb-5, 20133

Goals

 Effective usage of modern CPU cores
 Reconstruction: Come up with a parallel solution, which would improve

event processing throughput of the production nodes wrt current mode of
operation (running many serial reconstructions simultaneously)

➔ ATLAS Reconstruction is memory-hungry. The parallel solution must
allow memory sharing between event processors

 Analysis: Speedup interactive analysis jobs by processing different input
files in parallel instead of going over them serially, one at a time

 We want to achieve this goal with minimal changes to the existing
code

 No changes at all in the user code

V. Tsulaia Feb-5, 20134

end

c
o
re

-0

JOB 0:
Events: [0,1....]

c
o
re

-1

JOB 1:
Events: [0,1....]

c
o
re

-2

JOB 2:
Events: [0,1....]

c
o
re

-3

JOB 3:
Events: [0,1....]

PARALLEL: independent jobs

start

endstart

endstart

endstart

init

init

init

init

finfinfin

fin

finfinfin

fin

finfin

IF

IF

IF

IF

OF

OF

OF

OF

Process-based parallelism

Our present mode of operation

V. Tsulaia Feb-5, 20135

Athena MP-1

finOS-fork merge

c
o
re

-0

WORKER 0:
Events: [0, 5, 8,…]

c
o
re

-1

WORKER 1:
Events: [1, 7, 10,…]

c
o
re

-2

WORKER 2:
Events: [3, 6, 9,…]

c
o
re

-3

WORKER 3:
Events: [2, 4, 12,…]

interme
diate
OF

interme
diate
OF

interme
diate
OF

interme
diate
OF

init

PARALLEL: workers evt loop + finSERIAL:
parent-init-fork

SERIAL:
 parent-merge and finalize

init

initfin

initfin

initfin

initfin

IF

OF

Details presented on the first Concurrency Forum
Meeting in November 2011

V. Tsulaia Feb-5, 20136

● Original implementation of the AthenaMP lacks design in general,
which makes it hard to add new features

● Output file merging, which was an inseparable part of every
AthenaMP job, makes it rather inefficient
– Short jobs: substantial fraction of the overall wall time spent in merging
– Long jobs: by merging N full size outputs we make one huge resulting

file – difficult for the Production System to digest

Need of a new implementation

V. Tsulaia Feb-5, 20137

● Features
– New infrastructure written completely in C++

– Inter-process communications and process management is
handled by a custom library developed in ATLAS

● Uses boost interprocessing: shared queues, shared memory
segments

– Uses components from GaudiMP: IoComponentMgr

– Follows Gaudi component model: various event scheduling
strategies in AthenaMP workers are implemented by specialized
components (AlgTools)

● Should make it easier to plug in new functionalities

– Output file merging no longer considered the responsibility of the
core AthenaMP

● Now it's up to the clients of AthenaMP to decide how to deal with the
outputs made by AthenaMP workers processors

AthenaMP-2

V. Tsulaia Feb-5, 20138

IFIFIFIFIFIF

Event scheduling strategies: Shared Event Queue

AthenaMP-2

finOS-fork

c
o
re

-0

WORKER 0:
Events: [0, 5, 8,…]

c
o
re

-1

WORKER 1:
Events: [1, 7, 10,…]

c
o
re

-2

WORKER 2:
Events: [3, 6, 9,…]

c
o
re

-3

WORKER 3:
Events: [2, 4, 12,…]

init

PARALLEL: workers evt loop + finSERIAL: parent-init-fork SERIAL:finalize

init

initfin

initfin

initfin

initfin

IF

OF

OF

OF

OF

IF

V. Tsulaia Feb-5, 20139

Event scheduling strategies: Input File Per Worker

AthenaMP-2

finOS-fork

c
o
re

-0

WORKER 0:
Events: [0, 1, 2,…]

c
o
re

-1

WORKER 1:
Events: [0, 1, 2,…]

c
o
re

-2

WORKER 2:
Events: [0, 1, 2,…]

c
o
re

-3

WORKER 3:
Events: [0, 1, 2,…]

init

PARALLEL: workers evt loop + finSERIAL: parent-init-fork SERIAL:finalize

init

initfin

initfin

initfin

initfin OF4

OF1

OF2

OF3

IFIF1

IFIF2

IFIF3

IFIF4

Sharing memory between processes

● Athena reconstruction of real data (RAWtoESD), 64bit, 500evt/job
● Profiling done with 'free ­m ­s 1'
● ~45% memory shared between worker processes in AthenaMP

P r e l i m i n a r y

Memory spikes

● AthenaMP-1 reconstruction of real data (RAWtoESD), 64bit, 50evt/worker
● Profiling done with 'free ­m ­s 1'
● Spikes can be cured by serializing workers' finalization without

sacrificing the overall job performance

V. Tsulaia Feb-5, 201312

● Two series of recent tests with 64 bit AthenaMP-2 on the same
hardware
– 12 CPU Core Westmere, Hyper-threading, 48GB memory
– In order to simulate 3GB/core a special “memory eater” utility was running

on the machine bringing available memory limit down to 36GB

● Test #1
– Real data reconstruction (RAWtoESD), 500evts/job
– “Llightweight” (data quality monitoring algorithms disabled). ~2.2GB/job

of physical memory

● Test #2
– MC reconstruction (RDOtoESD), 250evts/job
– “Heavyweight” configuration. ~3.3GB/job of physical memory

Results are preliminary!

Event throughput

Event throughput. Test #1

● ~10% gain in event throughput by using AthenaMP

P r e l i m i n a r y

Event throughput. Test #2

● ~20% gain in event throughput by using AthenaMP
● Workers' finalization was serialized in AthenaMP

P r e l i m i n a r y

Event throughput. Test #2

● Workers' finalization was not serialized in AthenaMP
● Memory spikes can have a visible effect on overall performance

P r e l i m i n a r y

V. Tsulaia Feb-5, 201316

● By leveraging Linux fork and COW we achieve a significant
optimization of the overall memory footprint of multiple Athena
reconstruction jobs running on the same machine.

● This optimization comes with no CPU overhead.

● It allows us to increase the number of parallel reconstruction jobs and
by this way increase the overall event throughput.

● The exact performance gains depend on concrete job
configuration and hardware resources
– The example included in this talks shows that the event throughput can

be increased by at least 20% for the heavyweight reconstruction job
on the 3GB/core machine

Summary

V. Tsulaia Feb-5, 201317

● Various strategies for scheduling events to worker processes
– Single event (shared queue). Already exists
– Event chunks/clusters.
– Entire file. Prototype exists

● Output file sequencing and its usage in AthenaMP
– Cut output file when number of events reaches some predefined

maximum
– Or group events by time-dependent conditions (luminosity blocks)

● Specialized I/O worker processes
– Shared reader for RAW data files. Already exists
– DataHeader/Token scatter for shared POOL reader.
– Shared writer.

● The last item is very important for further developments towards the
event-level I/O: replacing files with events as work distribution unit,
which is how ATLAS is considering to follow the Opportunistic
Computing paradigm

Future developments

	Title page
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

