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Introduction

Assumptions The number of cores grows faster than the amount of memory
Event-level parallelism:

Memory consumption per event has to decrease
Orthogonal to other parallelization efforts
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Introduction

Assumptions The number of cores grows faster than the amount of memory
Event-level parallelism:

Memory consumption per event has to decrease
Orthogonal to other parallelization efforts

∙ On the Grid: 2 GB per core
∙ ARM servers (or: hyper-threading): 1 GB per core/thread

∙ Xeon Phi (MIC): 100MB per core
∙ GPUs: order of magnitude less

memory per core, change of
memory model
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Explored Memory Saving Techniques

Summary of so far explored memory saving techniques:

Memory Sharing

∙ Fork and copy-on-write
Fork should be done reasonably late

∙ Kernel SamePage Merging
Sharing is done automatically at the cost of speed

∙ Multi-threaded application (Geant4-MT)
Can go beyond page-wise sharing in the fork model

Reduction of Memory Consumption

∙ Kernel Compressed Memory
(zRam, frontswap, cleancache)
Virtual swap area used to compress unused memory

∙ X32 ABI: x86_64 semantics with 32bit pointers
Restricts address space to 4GB
(which should be acceptable)

These techniques are all (relatively) non-intrusive
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Discussion Items

Job scheduling

∙ For memory sharing: jobs with similar input data
should be co-scheduled

∙ In general: a good mix of jobs should be scheduled

Techniques provided by the Linux kernel

∙ Many of the new features are not available in SL6
∙ Virtual Machines can be used to couple a new kernel

with an SL6 user land
∙ Automatically adjusting kernel parameters can be

difficult

New platforms

∙ There might be a need to recompile (and verify) the
software stack for ARM and/or X32
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Kernel-compressed Memory – Principle

∙ Kernel module compcache / zram provides
a virtual block device for swapping

∙ Originally developed for “small” devices (Netbooks, phones, . . . )

∙ Part of Kernel >= 2.6.34,
can be compiled for SLC6 (with drawbacks)

Application Pages Kernel Pages

Swap
Device
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∙ Kernel module compcache / zram provides
a virtual block device for swapping

∙ Originally developed for “small” devices (Netbooks, phones, . . . )

∙ Part of Kernel >= 2.6.34,
can be compiled for SLC6 (with drawbacks)

Application Pages Kernel Pages

/dev/zram0

LZO
Compression

Change in strategy: not swap at all ↦→ swap whenever possible
(/proc/sys/vm/swappiness)
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Kernel-compressed Memory and cgroups

The system memory pressure and the swappiness are not
fine-grained enough handles for measurements

Linux cgroups allow to put the application into a limited memory container:

$ mkdir /sys/fs/cgroup/memory/restricted
$ echo $((150*1024*1024)) > \

/sys/fs/cgroup/memory/restricted/memory.limit_in_bytes
$ echo $PID > /sys/fs/cgroup/memory/restricted/tasks
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Kernel-compressed Memory – Figures
AliRoot reconstruction of 2 simulated pp Events (v5-04-25-AN)

Normal Run
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Kernel-compressed Memory – Figures
AliRoot reconstruction of 2 simulated pp Events (v5-04-25-AN)

cgroup memory restriction to 950 MB

0

500

1000

1500

2000

2500

3000

3500

0 50 100 150 200 250 300 350 400 450

M
em

or
y

[M
B

]

Time [s]

vss
rss

physical mem
swapped 0-pages

rss+swapped

9 / 13



Kernel-compressed Memory – Figures
AliRoot reconstruction of 2 simulated pp Events (v5-04-25-AN)

cgroup memory restriction to 240 MB
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Kernel-compressed Memory – Figures
AliRoot reconstruction of 10 PbPb Events (v5-03-62-AN)

Normal Run
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Kernel-compressed Memory – Figures
AliRoot reconstruction of 10 PbPb Events (v5-03-62-AN)

cgroup memory restriction to 900 MB
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Kernel-compressed Memory – Figures
AliRoot reconstruction of 10 PbPb Events (v5-03-62-AN)

cgroup memory restriction to 450 MB
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Kernel-compressed Memory – Figures
AliRoot reconstruction of 10 PbPb Events (v5-03-62-AN)

cgroup memory restriction to 150 MB
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Zero Pages

X-Check: scan through a core dump of the application

Can we get rid of these hundreds of Megabytes of continuous zeros?

∙ No change by using automatic garbage collection (Boehm’s GC)

∙ Zero pages in LHCb DaVinci: ≈ 700 MB out of 2.3 GB

∙ Zero pages in CMS reconstruction

∙ 180 MB out of 900 MB without output
∙ 280 MB out of 1.4 GB with output
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Forensics: First Results

Idea: Inspect memset() calls >4 kB

Dead pages (AliRoot reco)

∙ ≈ 40 % zero pages traced back
to source code

∙ Breaks down to half a dozen
memsets with high impact

∙ No hits after detector
initialization

∙ Scattered over uses of
TClonesArray

Remaining zero pages

∙ Excluded: read(), mmap()

∙ Excluded: ROOT buffers

∙ Measurement uncertainties at
memset boundaries

∙ Only literal memset() covered,
standard constructors:
int *a =
new int[1024*1024]();
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Next Steps

1 Forensics: Track back large zero-runs to a malloc()

2 How to choose zram parameters for an optimal tradeoff wrt.
throughput?

Perhaps zram can also be used as an “overflow” mechanism to make
sure that a job finishes
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