
GooFit: A GPU interface for MINUIT

Rolf Andreassen, Brian Meadows, Manjula de Silva, Mike Sokoloff

(Physics Department, University of Cincinnati)

Karen Tomko

(Ohio Supercomputer Center)

• Reminder: How MINUIT works

• User-level code

• PDF code

• Performance

• Three levels of users:

– End user

– Advanced user

– Engine developer

1 of 13 Rolf Andreassen University of Cincinnati

MINUIT

• We have some data, ~x, which we believe are drawn from a population described

by a model P with parameters ~α. We want to find the values of ~α such that

the likelihood is a maximum.

• Given ~α, the probability of observing data ~x is

P (~x|~α) =
∏

i

P(xi; ~α). (1)

which, for reasons of numerical accuracy, we transform to

ln P (~x|~α) =
∑

i

ln P(xi; ~α). (2)

as we seek the parameters which maximise the likelihood.

• Notice that getting the probability of an event usually requires a normalisation

integral:

P(x) =
F(x)∫
F(x)dx

(3)

where F is the probability density function.

• Parallelise using the GPU in two places: Numerical normalisation integrals

and sum over event probabilities.

2 of 13 Rolf Andreassen University of Cincinnati

Hello, GooFit: Trivial use case

int main (int argc, char** argv) {
// Variable class stores name, upper and lower limit, optionally
// number of bins and current error
Variable* xvar = new Variable("xvar", -5, 5);
xvar->numbins = 10000;

// Generate data
TRandom donram(42);
UnbinnedDataSet data(xvar); // Stores events
for (int i = 0; i < 10000; ++i) {

fptype val = donram.Gaus(0.2, 1.1);
if (fabs(val) > 5) {--i; continue;}
data.addEvent(val);

}

// Create PDF
Variable* mean = new Variable("mean", 0, 0.1, -10, 10);
Variable* sigm = new Variable("sigm", 1, 0.1, 0.5, 1.5);
// FooThrustFunctor classes are PDF objects.
GaussianThrustFunctor gauss("gauss", xvar, mean, sigm);
gauss.setData(&data);

// PdfFunctor is glue between MINUIT and GooFit.
PdfFunctor fitter(&gauss);
fitter.fit();

}

3 of 13 Rolf Andreassen University of Cincinnati

Internals of Gaussian PDF

#include "GaussianThrustFunctor.hh"

__device__ fptype dev_Gaussian (fptype* evt, fptype* p, unsigned int* indices) {
fptype x = evt[indices[2 + indices[0]]];
fptype mean = p[indices[1]];
fptype sigma = p[indices[2]];

return EXP(-0.5*(x-mean)*(x-mean)/(sigma*sigma));
}

__device__ device_function_ptr ptr_to_Gaussian = dev_Gaussian;

__host__ GaussianThrustFunctor::GaussianThrustFunctor (std::string n,
Variable* _x,
Variable* mean,
Variable* sigma)

: ThrustPdfFunctor(_x, n)
{

std::vector<unsigned int> pindices;
pindices.push_back(registerParameter(mean));
pindices.push_back(registerParameter(sigma));
cudaMemcpyFromSymbol((void**) &host_fcn_ptr, ptr_to_Gaussian, sizeof(void*));
initialise(pindices);

}

4 of 13 Rolf Andreassen University of Cincinnati

Existing functions

• Simple PDFs: Argus function, correlated Gaussian, Crystal Ball, exponential,

Gaussian, Johnson SU, relativistic Breit-Wigner, polynomial, scaled Gaussian,

smoothed histogram, staircase function, step function, Voigtian.

• Composites:

– Sum, f1A(~x) + (1 − f1)B(~x).

– Product, A(~x) × B(~x).

– Composition, A(B(x)) (only one dimension).

– Convolution,
t2∫
t1

A(x − t) ∗ B(t)dt.

– Map,

F (x) =


A(x) if x ∈ [x0, x1)

B(x) if x ∈ [x1, x2)

. . .

Z(x) if x ∈ [xN−1, xN]

• Specialised mixing PDFs: Coherent amplitude sum, incoherent sum, truth

resolution, three-Gaussian resolution, Dalitz-plot region veto, threshold damp-

ing function.

5 of 13 Rolf Andreassen University of Cincinnati

Performance

• Fits used for testing:

– Trivial Gaussian fit (with 10 million events).

– “Zach’s fit”: Extracting the natural line width of the D∗+. Binned fit

involving a convolution of a Breit-Wigner with the sum of three Gaussians.

– Mixing fit: Time-dependent Dalitz-plot fit to extract D0 − D0 mixing pa-

rameters.

• Several platforms:

– Cerberus: 2.27 GHz Intel Xeon CPU, Fedora 14

– Cerberus: nVidia C2050 GPU

– Oakley: 2 C2070 GPUs in parallel, RedHat 6.3 (Santiago)

– Starscream: Laptop with nVidia 650M GPU, Ubuntu 12.04

Cerberus (CPU) Cerberus (GPU) Oakley Starscream
Fit Time [s] Speedup Time [s] Speedup Time [s] Speedup Time [s] Speedup
Gaussian 78 1 0.35 220 0.21 371 3.1 25
Zach’s fit 428 1 6 71 6 71 18.7 23
Mixing fit 24617 1 74 333 - - 303 81

6 of 13 Rolf Andreassen University of Cincinnati

Data organisation

• Storing events is easy. Just make One Big Array with events laid end-to-end:

a1 b1 ... z1 | a2 b2 ... z2 | ... | aN bN ... zN

Then threads keep track of which event to look at, and PDFs keep track of

within-event indices of the observables they depend on.

• Constraints on how to store fit parameters:

– We must be able to use the same parameter in different PDFs - eg two

Gaussians with a shared mean.

– A single PDF type may have an unknown number of parameters. For

example, which degree is your polynomial? How many PDFs in your sum

or product?

• Our solution: Store all parameters in one global array, ‘cudaArray’; the PDFs

have indices into that array indicating which parameters they depend on.

• How to store the indices? We don’t know how many a PDF has.

• Recurse the same pattern: Store an array of indices, ‘paramIndices’, and

then each PDF can be summed up as a function pointer plus an index into

paramIndices!

• So, for each PDF, we store indices in a consistent pattern:

7 of 13 Rolf Andreassen University of Cincinnati

numParams
p_idx1 p_idx2 p_idx3
numObservables
o_idx1 o_idx2 ...

• For a single Gaussian, this looks like so:

(# parameters = 2)
(index of mean = 0) (index of sigma = 1)
(# observables = 1)
(index of x = 0)

Hence the mysterious lines in the example:

__device__ fptype dev_Gaussian (fptype* evt, fptype* p, unsigned int* indices) {
fptype x = evt[indices[2 + indices[0]]];
fptype mean = p[indices[1]];
fptype sigma = p[indices[2]];

• Notice that evt is a pointer into an array which stores all the event data:

evt (thread 1) evt (thread 2) ... evt (thread N)
x1 y1 z1 x2 y2 z2 ... xN yN zN

• The core engine’s task in pseudocode:

Calculate event address from thread number and event size
Call function with (event, parameters, start of PDF’s index array)
Return logarithm of result

8 of 13 Rolf Andreassen University of Cincinnati

• It is up to the function to interpret the numbers in its index array. In the case

of AddThrustFunctor, we store triplets of function information: Function index,

parameter index, index of weight parameter. Note that these are indices into

three different arrays! So loop-over-components code looks like this:

__device__ fptype dev_AddPdfs (fptype* evt, fptype* p, unsigned int* indices) {
int numParameters = indices[0];
fptype ret = 0;
fptype totalWeight = 0;
for (int i = 1; i < numParameters-3; i += 3) {

fptype weight = p[indices[i+2]];
totalWeight += weight;
unsigned int functionIdx = indices[i];
void* functionPtr = device_function_table[functionIdx];
unsigned int* functionParams = paramIndices + indices[i+1];

fptype curr = (*(reinterpret_cast<device_function_ptr>
(functionPtr))) (evt, p, functionParams);

ret += weight * curr * normalisationFactors[indices[i+1]];
}

}

Notice that the AddThrustFunctor evaluation does not care which observables

its components are looking at; that information is encoded in their index

arrays. AddThrustFunctor just has to know what part of the global paramIndices

it should pass to its target functions.

9 of 13 Rolf Andreassen University of Cincinnati

• None of this is necessary to write user-level code!

• A PDF writer needs to know what his particular indices mean, but need not

know anything about the core engine.

10 of 13 Rolf Andreassen University of Cincinnati

Shovelling bytes

• Data from host to device:

– Parameter and function-pointer indices. Only at initialisation.

– Parameter and normalisation values. Once per MINUIT iteration.

– Events. Do once - unless the dataset is very large.

• What shall we do with a large data set?

– Split it up so each part fits in a GPU.

– If available, assign each part to a separate GPU!

– If not, evaluate one part while another is being copied.

11 of 13 Rolf Andreassen University of Cincinnati

Optimisation; what to do where

• Three main tasks:

– Decide what parameters to look at next - MINUIT’s core algorithm. Al-

ways CPU.

– Evaluate per-event PDFs. Always GPU.

– Normalisation integrals. CPU if an analytic expression exists, GPU if done

numerically.

• Lack of fine-grained profiling makes it hard to track down bottlenecks in

execution.

• A useful trick for the mixing PDF: Cache the computationally-intensive RBW

part of the calculation, which depends on masses and widths of the resonances.

Tradeoff: More complicated PDF code.

12 of 13 Rolf Andreassen University of Cincinnati

Summary and outlook

• We have a great tool!

• We hope we can convince other people to use it.

• Still need to work on multiple GPUs, large data sets, fine-grained optimisa-

tions.

• Source code is available for download:

http://www.physics.uc.edu/~rolfa/GooFit_16Jan2013.tar.gz

13 of 13 Rolf Andreassen University of Cincinnati

