
art and the Intensity
Frontier
Concurrency Forum Workshop,
Ferburary 4-6 2013

Chris Green
SCD-ADSS-SSI



Outline

Overview of direction.

Details.

Studies.

2 / 15



Overview of direction

Mostly incremental changes to existing art framework.

Choice of TBB for multi-threading framework.

Event-level and user-level (intra-module) parallelism.

Initially control-flow, not demand-driven.

3 / 15



Details: choice of parallelism toolkit

OpenMP looked at initially, but rejected:
Difficult to use well: not accessible for users.
Cannot take advantage of C++-specific knowledge (locks).
Nesting intra-module use within tasks very restricted.

TBB chosen for schedule-level tasks and task queues.
Intra-module use can be TBB high-level constructs
(parallel_for or parallel_reduce) or low-level TBB
tasks.

4 / 15



Detail: choice of parallelism level.

Due to generally low module count in Intensity Frontier
experiments, reward / effort for module-level parallelism
for trigger-path modules deemed insufficient, especially
since bulk of work combined in just a few modules that
must run serially.

Event-level (multiple schedules) being implemented. First
version to process events simultaneously only within a
subrun.

TBB use within modules automatically available.

Module-level parallelism being considered specifically for
non-thread-safe analyzers and output modules in lieu of
event-level parallelism.

5 / 15



Detail

Services types: LEGACY, GLOBAL and PER_SCHEDULE.
Using LEGACY services automatically precludes
multi-schedule operation. GLOBAL implies full
thread-safety.

ServiceHandle to return correct service regardless of
scope without extra arguments using TBB task tools.

Signals / slots for service callbacks: global and
per-schedule signals.

Looking at HDF5 for parallel I/O for the long term.

6 / 15



Detail

No initial changes to data model. RunFragment and
SubRunFragment concepts likely to allow event-level
parallelism across subrun and run boundaries.

No changes to ancillary data / metadata.

Parallel resources managed by configuration option /
TBB: generally, services.scheduler.num_threads
>> services.scheduler.num_schedules.

7 / 15



Studies: Track-finding — intro.

NOνA simulated far detector data, 5 ms events
(nhit ∼ 90 K).

2D Hough-like transform algorithm.

Results shown for y − z -view only (about 2/3 of hits in
each event).
Six stages:

1 construct time histogram of hits;
2 identify time-based clusters;
3 assemble hit lists for each cluster;
4 produce (ρ, θ) for hit combinations;
5 find peaks in transform space;
6 extract track parameters from peaks.

Implement stages 1 – 4 in various ways: serial, TBB (with
variants).

8 / 15



Studies: Track-finding — serial baseline.
All results shown for 4× AMD 6128, "Magny Cours," no
NUMA control.

Time per event (ms)

DataRead

Binning

TimeClustering

HitClustering

HoughTransform

0 100 200 300

●

●

●

●

●

●●●●

●●

●●●●●●●●●●●

● ● ●

●

Time for serial algorithm.
9 / 15



Studies: Track-finding — experiment.

TBB, struct-of-arrays data structures:
1 parallel_for: ∼ serial.
2 parallel_reduce, use of std::set: ∼ 45× slower than

serial.
3 parallel_reduce: ≈ 7× faster than serial.
4 parallel_reduce: ≈ 2× faster than serial;
parallel_for (array offset calculation): ≈ 6.5× faster
than serial;
task: no change from parallel_for.

TBB, array-of-structs data structures:
1 Slightly slower than struct-of-arrays.
2 No change from struct-of-arrays.
3 parallel_for: ≈ 12× faster than serial.
4 ≈ 7× faster than serial.

10 / 15



Studies: Track-finding — results.

Speed−up (x)

C
ou

nt

0

10

20

30

40

50

6 8 10 12 14 16

norm_reduce

0

10

20

30

40

50

norm_coll

Hit clustering.

Speed−up (x)

C
ou

nt

0

20

40

60

2 4 6 8

norm_reduce
0

20

40

60

norm_simple
0

20

40

60

norm_coll

Hough transform.

11 / 15



Studies: Track-finding — scaling, interference.
Scaling: full-machine event rate by total thread count,
grouped by threads per process. TBB,
struct-of-arrays.

Total number of threads

E
ve

nt
 r

at
e 

(e
ve

nt
s/

se
c)

0

10

20

30

0 20 40 60 80 100

●
●
●

●
●
●
●
●
●
●

●
●
●
●
●
●
●

●
●
●

●

●
●

●●
●
●
●
●
●●

●●●●●●●●
●●

●
●●●

●●●

1
2
3
4
5
6
7
8
32

●

12 / 15



Studies: Track-finding — lessons learned.

Not in a regime where computation is so intense that data
proximity is more important than algorithm complexity.

If an algorithm is expressible simply using high-level
constructs (e.g. parallel_for) using task is unlikely to
help.

At least with these algorithms, super-linear performance
was not achieved. Scaling / interference studies show that
single thread processes will achieve about the best
per-machine performance (subject to jitter). Moving to 2
threads for the algorithms smooths out the jitter.

13 / 15



Backup slides . . .

14 / 15



Studies: Track-finding.
Scaling: full-machine event rate by number of processes,
grouped by threads per process. TBB,
struct-of-arrays.

Number of processes

E
ve

nt
 r

at
e 

(e
ve

nt
s/

se
c)

20

25

30

10 20 30 40 50

●
●

● ● ●
● ●

● ●

●

● ● ●

●
●

●

●

●

●

●

●

●
● ●

● ● ●
● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ●

1 over
1 under
2 over
2 under
3 over
3 under
4 over
4 under
5 over
5 under
6 over
7 over
8 over

●

●

●

15 / 15


