
2013 Concurrency Workshop

Parallelism and Control
Hiving complex Algorithms and managing logic flow

Wim Lavrijsen

2 Parallelism and Control, February 2013, FNAL

GaudiHive for ATLAS

• GaudiHive is a multicore version of Gaudi that:
– Manages multiple events
– Manages algorithms concurrently

• Requires re-entrancy or the ability to clone Algorithms

• ATLAS has many Algorithms of some complexity
– Structured by means of AlgTools through interfaces

• Duration and resources needed not strictly known until run-time
• Largely invisible to the framework (modulo creation/destruction)

– Often not re-entrant → cloning needed?
• May not be possible and may not be a good idea

– E.g. public tools with large resources should remain shared

– Many use memoization strategies
• Including for (event duration) life-time management

3 Parallelism and Control, February 2013, FNAL

Additional Challenges:
Hardware

• Main bottlenecks in Athena codes
– Memory (strongly dependent on type of job)
– L1 I-cache: est. loss ~30-50% (OOP, shared libs)

• Solutions (for both today's and future hardware):
– Lower memory use
– Greater instruction locality
– Greater data locality
– Improve software organization

• Et tu, GaudiHive?
– Might be able to help lower memory use per event
– Wrong granularity (too high-level) to fix locality

}strongly
related

4 Parallelism and Control, February 2013, FNAL

Why Care About Locality?
Example: Xeon Phi (MIC)

• Issue much more limiting than on Xeon
– Same 32KB L1 I-cache, but shared by 4 threads
– Half # iTLB entries, again shared by 4 threads
– Issue of bundled (in-order) instructions
– No same-thread back-to-back issue

• Yet, threads still time-muxed: need minimum 2 threads/core

• Limited to max 8GB/60 cores (model-dependent)
– Yet, 60 x deep call stack (x 4 threads) == lots of waste
– Deployment model takes up on-device memory

• A single function use can pull in a large, fully mapped, .so

=> Hits every bottleneck for typical Athena jobs hard
=> Not MIC-only: generally true on small-core architectures

5 Parallelism and Control, February 2013, FNAL

Threads?

• Attach themselves to the wrong resources
– Bottlenecks already exist for single thread on big core
– Small core hits even harder on existing limitations
– Threads compete for the bottleneck resources

• Do not utilize new resources; e.g. for MIC:
– 512-byte wide registers, vector-, and mask-operations
– Coherent L2 D-cache for fast data communication

• Instead, good instruction/data locality is needed
– Once established, threads can follow more naturally

=> Threads require clear data and logic flows with good
locality for good performance, they do not provide them

6 Parallelism and Control, February 2013, FNAL

Hierarchical Solution Needed

• Approach with different solutions on multiple levels
– Event/Algorithm-level parallelism by GaudiHive

• For operations on different resources and/or different durations
– Instruction/data-level parallelism in inner loops

• For same operations on same data
– Solve data locality, implement vectorizations
– Enable fine-grained parallelism
– Enable off-loading to a co-processor

• Resource management with an overall task pool
– TBB being the most popular; C++ AMP?
– C++14? C++11 (on Linux) too close to POSIX

=> Requires restructuring of complex Algorithms, which
requires good input to fit components in their proper place

7 Parallelism and Control, February 2013, FNAL

Decisions, Decisions

• Choices for complex Algorithms & their AlgTools:
– Break up/promote parts into multiple Algorithms

• Then open for GaudiHive to schedule and clone
– Leave structurally in-place, but make re-entrant
– Leave structurally in-place, but make clonable
– Leave structurally in-place, but control access (locks)
– Coalesce down into single code sections

• With fully open/transparent data flow
• Implement fine-grained parallelism on inner loops
• Might involve EDM changes

=> Except for the last step, this leaves physics code as-is,
with restructuring at the component level only!

• How can the framework help drive decisions?

8 Parallelism and Control, February 2013, FNAL

Utilizing GaudiHandles

• Framework is rather blind to AlgTool uses ...
– Only show up on creation/destruction (ToolSvc)

• … GaudiHandles provide a look into logic flow
• Caveat: handles can make logic safe, not data flow

– Data flow usually consist of multiple logic operations
• E.g. create new container, put into StoreGate, use container

=> Would require transaction semantics (another talk ...)

=> Want to keep a working application, while:
– Finding points of congestion and missed parallelism
– Working on that single point of interest only
– Retaining ability to retrace steps or fully revert

• Think compilers flags to go GaudiHive ↔ Athena

9 Parallelism and Control, February 2013, FNAL

• Complex Algorithm build up with AlgTools
– Combines AlgTools on declared interfaces only
– Lock-based atomic operations may not compose

• Deterministically detectable with hierarchical locks
• Solvable by acquiring all locks in order or a priori

– Proper order; with global lock; or use of std::lock()
Could the framework do this automatically?

Threads and Components:
(Non-)Composability

Atomic A
Lock A

Atomic B
Lock B

Atomic B
Lock B

Atomic A
Lock A

Black box
components

Atomic AB

From Developer 1: new Atomic
operation to run on Thread 1

Atomic BA

From Developer 2: new Atomic
operation to run on Thread 2

Lock A, B Lock B, A
Dead-lock! Developers
must coordinate across
all codes/libs.

10 Parallelism and Control, February 2013, FNAL

Automatic Fine-grained Locks

• On first use, trace the call-tree(s) of handles
1.Globally lock framework during tracing
2.Collect and record all handles seen
3.Fit results into global order (if possible; diagnose if not)

• On subsequent calls:
1.If order matches global order, acquire/release lazily
2.Otherwise, acquire greedily, do not release
3.Keep following the call tree and if deviates:

• Accept/release next lock if in global order
• Re-acquire global lock and start tracing if not

• Composes fine; greedy locking may be expensive
– Works if many top-level branches and/or shallow stacks

11 Parallelism and Control, February 2013, FNAL

Toy Setup

• C++11 based, AthExHelloWorld derived:
– CLang++ from trunk, gcc4.7.2 headers and libs

• Move-semantics needed (concurrency support is limited)

• 3 policies: unlocked(*), global lock, fine grained
(*) ToolHandles can be created lazily, so a lock on the ToolSvc

 is needed to prevent crashes when called from a thread

T1 T2S1 S1

S2

R

counter

countercounter

(Note 1: call order shown, there is
only one S1 instance.
Note 2: you'd never count like
this, but it allows easy checking.
Note 3: only one Algorithm, no
call tree conflict resolution yet.)

12 Parallelism and Control, February 2013, FNAL

Results
(This is a toy setup; only qualitative conclusions might be valid!)

- i7, 4 cores, HT on
- thread-safe handles
- no lock →
 wrong results!
- tool re-entrant →
 only service locked

threads / one Algorithm::execute per thread

ex
ec

ut
io

n
co

m
pa

re
d

to
 s

er
ia

l

Parallelism and Control, Februaru 2013, FNAL

Running Atlas Reconstruction
Through GaudiHive

Charles Leggett

14 Parallelism and Control, Februaru 2013, FNAL

Modifications to Athena

• For each Algorithm require:
– per-event run times

• modify ChronoAuditor (only does total time)

– input and output data
• modify StoreGateAuditor
• try to differentiate between Sequences and Algorithms/subAlgs

• run normal reconstruction

• massage data into a json file that's used to configure
GaudiHive

 "algorithms" : [
 {
 "name" : "CaloCellMaker",
 "inputs" : ["TileRawChannelCnt", "EventSelector", "LArRawChannels", "MyEvent"],
 "outputs" : ["AllCalo", "MBTSContainer"],
 "runtimes" : [406409, 281193, 383043],
 IsClonable = True
 },

15 Parallelism and Control, Februaru 2013, FNAL

Initial Issues

• Not a drop in replacement:
– Internal details of Atlas make extracting data flow non-trivial

• turn off Trigger, or run only on data

– Lots of cycles in graph of data flow
• can be removed after understanding source

– Certain assumptions have to be made as to the source of some
Data Objects

• At the very least, will have to modify Athena to make all
Algorithms declare a-priori their inputs and outputs

16 Parallelism and Control, Februaru 2013, FNAL

Initial Results

• Configuration options
– #Algorithms in flight
– #Events in flight
– #threads
– cloning

• phase space is large

• Test platform:
– 12 CPUs with hyperthreading = 24 virtual cores

• Data set
– Standard Atlas Reco from t-tbar MC, no Trigger
– 100 events

– 161 Algorithms, 317 DataObj

17 Parallelism and Control, Februaru 2013, FNAL

0 5 10 15 20 25
0

5

10

15

20

25

Speedup wrt Serial vs. Number of Threads

1 Evt in Flight

1 Evt, no clone

2 Evt in Flight

2 Evt, no clone

3 Evt in Flight

3 Evt in Flight

5 Evt in Flight

5 Evt, no clone

10 Evt in Flight

10 Evt, no clone

20 Evt in Flight

20 Evt, no clone

30 Evt in Flight

30 Evt, no clone

optimal scaling

AthenaMP

Number of Threads

S
pe

ed
up

 w
rt

 S
er

ia
l

Timing Results

#Algs in Flight
= #Threads

18 Parallelism and Control, Februaru 2013, FNAL

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

Speedup vs Optimal Scaling

1 Evt in Flight

2 Evt in Flight

3 Evt in Flight

 5 Evt in Flight

10 Evt in Flight

20 Evt in Flight

30 Evt in Flight

AthenaMP

Number of Threads

S
p

e
e

d
 w

rt
 O

p
tim

a
l S

ca
lin

g

Timing Results

#Algs = #Threads

19 Parallelism and Control, Februaru 2013, FNAL

2 6 10 14 18 22 26 30 34 38 42
150

300

600

Runtime vs Number of Algs in Flight

2 evts

4 evts

6 evts

8 evts

10 evts

12 evts

14 evts

16 evts

18 evts

20 evts

22 evts

24 evts

26 evts

28 evts

30 evts

Algorithms in Flight

R
un

tim
e

(s
)

Timing Results

100 events, 24 threads
full cloning

serial runtime:
2623s

20 Parallelism and Control, Februaru 2013, FNAL

10 14 18 22 26 30 34 38 42
175

185

195

205

215

225

235

Runtime vs Number of Algs in Flight

2 evts

4 evts

6 evts

8 evts

10 evts

12 evts

14 evts

16 evts

18 evts

20 evts

22 evts

24 evts

26 evts

28 evts

30 evts

Algorithms in Flight

R
un

tim
e

(s
)

Timing Results

serial runtime:
2623s

100 events, 24 threads
full cloning

21 Parallelism and Control, Februaru 2013, FNAL

Full Cloning

2.81 8 egamm
2.20 8 InDetSiSpTrackFinder
2.00 8 CaloTopoCluster
1.52 8 InDetAmbiguitySolver
1.20 7 CaloCellMaker
1.18 5 StreamESD
1.14 8 InDetExtensionProcessor

total runtime: 213.4s

22 Parallelism and Control, Februaru 2013, FNAL

Limit Cloning

2.81 4 egamm
2.20 3 InDetSiSpTrackFinder
2.00 3 CaloTopoCluster
1.52 3 InDetAmbiguitySolver
1.20 2 CaloCellMaker
1.18 3 StreamESD
1.14 3 InDetExtensionProcessor

total runtime: 215.9s

23 Parallelism and Control, Februaru 2013, FNAL

Other Issues

• How to handle Sequences?

• Looking at just the data flow graph, the scheduling order of
Alg 2 and Alg 3 is ambiguous

Event
Store

Alg 1

Alg 2

Alg 3

DataObj

DataObj

Alg 1 Alg 2

Alg 3

24 Parallelism and Control, Februaru 2013, FNAL

• Could solve in by renaming/versioning the DataObj

Event
Store

Alg 1

Alg 2

Alg 3

DataObj

DataObj2

DataObj

Alg 1

Alg 2

Alg 3

DataObj2

25 Parallelism and Control, Februaru 2013, FNAL

• But with a squence, the execution of Alg2 may be set at
runtime via a configuration option.

• Need to be able to mark a sequence of Algorithms as being
purely serial

Event
Store

Alg 1

Alg 3

DataObj

DataObj2

26 Parallelism and Control, Februaru 2013, FNAL

Other Issues

• How to implement Filters?
– Task scheduler must be told to stop executing current event across

all Algorithms and threads.

• Determining data flow for Trigger is non obvious
– no communication with StoreGate

• No idea of what are the memory implications of cloning
Algorithms - obviously depends on the Algorithm

• Need to experiment with user initiated multi-threading (eg a
parallel_for) inside Algorithm or AlgTool

• Even if we only make the top few algs cloneable, how
much are we going to have to modify the code?

27 Parallelism and Control, Februaru 2013, FNAL

What's Next

• These results are an idealized, best case scenario - no
memory issues, no L1/L2/L3 cache, I/O, locking, etc.
– we will never see this in real life - how much worse will it be?

• Can we obtain information at runtime from Components?
– re-entrancy, cloning-safety, resources required
– tool author should declare, rather than user find out

• Figure out how to handle Trigger
• Build infrastructure to allow easy collection of statistics

– find points of contention and missed parallelism
– graph for GaudiHive can also serve to improve code organization

• Explore ramifications of user level parallelism in Algorithms
– get a MIC sometime soon!
– interactions with TBB/off-loading

• Ultimate goals will depend on decisions at this workshop

28 Parallelism and Control, Februaru 2013, FNAL

 Extras

29 Parallelism and Control, Februaru 2013, FNAL

Data Flow in Atlas Reconstruction

• GaudiHive builds a directed, acyclic graph to determine
which algorithms to schedule
– nodes are algorithms and data objects

• In order to schedule an alg, it must have inputs and outputs
– Atlas reco has 1892 Algorithms, of which 709 either read from or

write to StoreGate

• This is due to the Trigger
– Trigger algs don't use StoreGate, but rather communicate with

Trigger Tokens

• For now, let's turn off Trigger, and rerun
– 161 Algs, 161 with StoreGate info
– 317 Data Objects

30 Parallelism and Control, Februaru 2013, FNAL

Cycles in Atlas Reconstruction

• Atlas flow graph has lots of cycles

• usually due to a “contains” followed by a “record”

• remove all cycles

 if (evtStore()->contains<Muon::RpcCoinDataContainer>(m_outputCollectionLocation)) {
 msg(MSG::FATAL) <<"Muon::RpcPrepDataContainer not found while “
 <<”Muon::RpcCoinDataContainer found in Event Store"<<endreq;
 return StatusCode::FAILURE;
}

m_rpcCoinDataContainer->cleanup();

StatusCode status = evtStore()->record(m_rpcPrepDataContainer,
 m_outputCollectionLocation);

31 Parallelism and Control, Februaru 2013, FNAL

2 6 10 14 18 22 26 30 34 38 42
2

4

6

8

10

12

14

16

Speedup wrt Serial vs Number of Algs in Flight

2 evts

6 evts

10 evts

24 evts

30 evts

Algorithms in Flight

S
pe

ed
up

 w
rt

 S
er

ia
l

100 events, 24 threads

	Title
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12

