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GaudiHive for ATLAS

• GaudiHive is a multicore version of Gaudi that:
– Manages multiple events
– Manages algorithms concurrently

• Requires re-entrancy or the ability to clone Algorithms

• ATLAS has many Algorithms of some complexity
– Structured by means of AlgTools through interfaces

• Duration and resources needed not strictly known until run-time
• Largely invisible to the framework (modulo creation/destruction)

– Often not re-entrant → cloning needed?
• May not be possible and may not be a good idea

– E.g. public tools with large resources should remain shared

– Many use memoization strategies
• Including for (event duration) life-time management



3 Parallelism and Control, February 2013, FNAL

Additional Challenges:
Hardware

• Main bottlenecks in Athena codes
– Memory (strongly dependent on type of job)
– L1 I-cache: est. loss ~30-50% (OOP, shared libs)

• Solutions (for both today's and future hardware):
– Lower memory use
– Greater instruction locality
– Greater data locality
– Improve software organization

• Et tu, GaudiHive?
– Might be able to help lower memory use per event
– Wrong granularity (too high-level) to fix locality

}strongly 
related
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Why Care About Locality? 
Example: Xeon Phi (MIC)

• Issue much more limiting than on Xeon
– Same 32KB L1 I-cache, but shared by 4 threads
– Half # iTLB entries, again shared by 4 threads
– Issue of bundled (in-order) instructions
– No same-thread back-to-back issue

• Yet, threads still time-muxed: need minimum 2 threads/core

• Limited to max 8GB/60 cores (model-dependent)
– Yet, 60 x deep call stack (x 4 threads) == lots of waste
– Deployment model takes up on-device memory

• A single function use can pull in a large, fully mapped, .so
  

=> Hits every bottleneck for typical Athena jobs hard
=> Not MIC-only: generally true on small-core architectures
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Threads?

• Attach themselves to the wrong resources
– Bottlenecks already exist for single thread on big core
– Small core hits even harder on existing limitations
– Threads compete for the bottleneck resources

• Do not utilize new resources; e.g. for MIC:
– 512-byte wide registers, vector-, and mask-operations
– Coherent L2 D-cache for fast data communication

• Instead, good instruction/data locality is needed
– Once established, threads can follow more naturally

  

=> Threads require clear data and logic flows with good 
locality for good performance, they do not provide them
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Hierarchical Solution Needed

• Approach with different solutions on multiple levels
– Event/Algorithm-level parallelism by GaudiHive

• For operations on different resources and/or different durations
– Instruction/data-level parallelism in inner loops

• For same operations on same data
– Solve data locality, implement vectorizations
– Enable fine-grained parallelism
– Enable off-loading to a co-processor

• Resource management with an overall task pool
– TBB being the most popular; C++ AMP?
– C++14? C++11 (on Linux) too close to POSIX

  

=> Requires restructuring of complex Algorithms, which 
requires good input to fit components in their proper place



7 Parallelism and Control, February 2013, FNAL

Decisions, Decisions

• Choices for complex Algorithms & their AlgTools:
– Break up/promote parts into multiple Algorithms

• Then open for GaudiHive to schedule and clone
– Leave structurally in-place, but make re-entrant
– Leave structurally in-place, but make clonable
– Leave structurally in-place, but control access (locks)
– Coalesce down into single code sections

• With fully open/transparent data flow
• Implement fine-grained parallelism on inner loops
• Might involve EDM changes

=> Except for the last step, this leaves physics code as-is, 
with restructuring at the component level only!

• How can the framework help drive decisions?
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Utilizing GaudiHandles

• Framework is rather blind to AlgTool uses ...
– Only show up on creation/destruction (ToolSvc)

• … GaudiHandles provide a look into logic flow
• Caveat: handles can make logic safe, not data flow

– Data flow usually consist of multiple logic operations
• E.g. create new container, put into StoreGate, use container

=> Would require transaction semantics (another talk ...)
 

=> Want to keep a working application, while:
– Finding points of congestion and missed parallelism
– Working on that single point of interest only 
– Retaining ability to retrace steps or fully revert

• Think compilers flags to go GaudiHive ↔ Athena
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• Complex Algorithm build up with AlgTools
– Combines AlgTools on declared interfaces only
– Lock-based atomic operations may not compose

• Deterministically detectable with hierarchical locks
• Solvable by acquiring all locks in order or a priori

– Proper order; with global lock; or use of std::lock()
Could the framework do this automatically?

Threads and Components:
(Non-)Composability

Atomic A
Lock A

Atomic B
Lock B

Atomic B
Lock B

Atomic A
Lock A

Black box 
components

Atomic AB

From Developer 1: new Atomic 
operation to run on Thread 1

Atomic BA

From Developer 2: new Atomic 
operation to run on Thread 2

Lock A, B Lock B, A
Dead-lock! Developers 
must coordinate across 
all codes/libs.
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Automatic Fine-grained Locks

• On first use, trace the call-tree(s) of handles
1.Globally lock framework during tracing
2.Collect and record all handles seen
3.Fit results into global order (if possible; diagnose if not)

• On subsequent calls:
1.If order matches global order, acquire/release lazily
2.Otherwise, acquire greedily, do not release
3.Keep following the call tree and if deviates:

• Accept/release next lock if in global order
• Re-acquire global lock and start tracing if not

• Composes fine; greedy locking may be expensive
– Works if many top-level branches and/or shallow stacks
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Toy Setup

• C++11 based, AthExHelloWorld derived:
– CLang++ from trunk, gcc4.7.2 headers and libs

• Move-semantics needed (concurrency support is limited)

• 3 policies: unlocked(*), global lock, fine grained
(*) ToolHandles can be created lazily, so a lock on the ToolSvc

     is needed to prevent crashes when called from a thread

T1 T2S1 S1

S2

R

counter

countercounter

(Note 1: call order shown, there is 
only one S1 instance.
Note 2: you'd never count like 
this, but it allows easy checking.
Note 3: only one Algorithm, no 
call tree conflict resolution yet.)
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Results
(This is a toy setup; only qualitative conclusions might be valid!)

- i7, 4 cores, HT on
- thread-safe handles
- no lock →
     wrong results!
- tool re-entrant →
     only service locked

threads / one Algorithm::execute per thread
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Running Atlas Reconstruction 
Through GaudiHive

Charles Leggett
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Modifications to Athena

• For each Algorithm require:
– per-event run times

• modify ChronoAuditor (only does total time)

– input and output data
• modify StoreGateAuditor
• try to differentiate between Sequences and Algorithms/subAlgs

• run normal reconstruction

• massage data into a json file that's used to configure 
GaudiHive

  "algorithms" : [
    {
      "name" : "CaloCellMaker",
      "inputs" : ["TileRawChannelCnt", "EventSelector", "LArRawChannels", "MyEvent"],
      "outputs" : ["AllCalo", "MBTSContainer"],
      "runtimes" : [406409, 281193, 383043],
      IsClonable = True
    },
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Initial Issues

• Not a drop in replacement:
– Internal details of Atlas make extracting data flow non-trivial

• turn off Trigger, or run only on data

– Lots of cycles in graph of data flow
• can be removed after understanding source

– Certain assumptions have to be made as to the source of some 
Data Objects

• At the very least, will have to modify Athena to make all 
Algorithms declare a-priori their inputs and outputs
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Initial Results

• Configuration options
– #Algorithms in flight
– #Events in flight
– #threads
– cloning

• phase space is large

• Test platform:
– 12 CPUs with hyperthreading = 24 virtual cores

• Data set
– Standard Atlas Reco from t-tbar MC, no Trigger
– 100 events

– 161 Algorithms, 317 DataObj
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Full Cloning

2.81  8  egamm
2.20  8  InDetSiSpTrackFinder
2.00  8  CaloTopoCluster
1.52  8  InDetAmbiguitySolver
1.20  7  CaloCellMaker
1.18  5  StreamESD
1.14  8  InDetExtensionProcessor

total runtime: 213.4s
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Limit Cloning

2.81  4  egamm
2.20  3  InDetSiSpTrackFinder
2.00  3  CaloTopoCluster
1.52  3  InDetAmbiguitySolver
1.20  2  CaloCellMaker
1.18  3  StreamESD
1.14  3  InDetExtensionProcessor

total runtime: 215.9s
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Other Issues

• How to handle Sequences?

• Looking at just the data flow graph, the scheduling order of 
Alg 2 and Alg 3 is ambiguous

Event
Store

Alg 1

Alg 2

Alg 3

DataObj

DataObj

Alg 1 Alg 2

Alg 3
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• Could solve in by renaming/versioning the DataObj

Event
Store

Alg 1

Alg 2

Alg 3

DataObj

DataObj2

DataObj

Alg 1

Alg 2

Alg 3

DataObj2
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• But with a squence, the execution of Alg2 may be set at 
runtime via a configuration option.

• Need to be able to mark a sequence of Algorithms as being 
purely serial

Event
Store

Alg 1

Alg 3

DataObj

DataObj2
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Other Issues

• How to implement Filters?
– Task scheduler must be told to stop executing current event across 

all Algorithms and threads.

• Determining data flow for Trigger is non obvious
– no communication with StoreGate

• No idea of what are the memory implications of cloning 
Algorithms - obviously depends on the Algorithm

• Need to experiment with user initiated multi-threading (eg a 
parallel_for) inside Algorithm or AlgTool

• Even if we only make the top few algs cloneable, how 
much are we going to have to modify the code?
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What's Next

• These results are an idealized, best case scenario - no 
memory issues, no L1/L2/L3 cache, I/O, locking, etc. 
– we will never see this in real life - how much worse will it be?

• Can we obtain information at runtime from Components?
– re-entrancy, cloning-safety, resources required
– tool author should declare, rather than user find out

• Figure out how to handle Trigger
• Build infrastructure to allow easy collection of statistics

– find points of contention and missed parallelism
– graph for GaudiHive can also serve to improve code organization

• Explore ramifications of user level parallelism in Algorithms
– get a MIC sometime soon!
– interactions with TBB/off-loading

• Ultimate goals will depend on decisions at this workshop
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 Extras
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Data Flow in Atlas Reconstruction

• GaudiHive builds a directed, acyclic graph to determine 
which algorithms to schedule
– nodes are algorithms and data objects

• In order to schedule an alg, it must have inputs and outputs
– Atlas reco has 1892 Algorithms, of which 709 either read from or 

write to StoreGate

• This is due to the Trigger
– Trigger algs don't use StoreGate, but rather communicate with 

Trigger Tokens

• For now, let's turn off Trigger, and rerun
– 161 Algs, 161 with StoreGate info
– 317 Data Objects
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Cycles in Atlas Reconstruction

• Atlas flow graph has lots of cycles

• usually due to a “contains” followed by a “record”

• remove all cycles

 if (evtStore()->contains<Muon::RpcCoinDataContainer>(m_outputCollectionLocation)) {
     msg( MSG::FATAL) <<"Muon::RpcPrepDataContainer not found while “                 
                      <<”Muon::RpcCoinDataContainer found in Event Store"<<endreq;
     return StatusCode::FAILURE;
}

m_rpcCoinDataContainer->cleanup();

StatusCode status = evtStore()->record(m_rpcPrepDataContainer,
                                       m_outputCollectionLocation);
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