A - 7 —»two T |ets + X, 60 fb’

CERN
Concurrency Framework
Project

(CF4Hep)

Danilo Piparo, Pere Mato Vila, Benedikt Hegner
CERN

Outline

two T |ets + X, 60 b

® QurVision
® Current Activities

e Components

® Summary

Our Vision

A T two T|ets + X, 60 1b"

® Develop a full parallel framework for future experiments
® Supporting concurrency at multi-event level,among and inside algorithms
® we think all three levels are necessary
® Robustness over speed (some coarse-grain rather than lots of fine-grain locking)
® Design based on loosely coupled re-usable components
® Provide the re-usable components to the LHC experiments
® Components are designed as experiment agnostic
® Only constrains are choice of C++11 and TBB as assisting library
® Assist physicists in writing proper algorithms
® Support them with static code checking and good design patterns

® Community training to reach required knowledge (C++1 [, tools, ...)

Current Activities

A T two T|ets + X, 60 1b

® Event-loop component (working title GaudiHive)

® Forward-scheduling via dependency analysis
(i.e. start an algorithm once data there)

EventLoopMgr

® Rather clear idea about the general design and
behaviour after Whiteboard demonstrator

T cheduler orithmPoo
® Started to work on Gaudi+LHCb AlgSchedul AlgorithmPool

reconstruction (Brunel) as test case

” Algorithm I JJ Algorithm |

® Concrete migration problems Whiteboard (TES) (idle)
popping up at interesting places \& Evem%ts\j
I

® (Near) Future
® Successfully run a slice of the full reco (MiniBrunel)
® Develop other component prototypes along the way

® Only after the full exercise we will decide on concrete implementation
(we dare throwing away prototypes!) 4

Highlights

A T two T|ets + X, 60 1b

® Forward scheduling
® Forward-scheduling works just perfectly
® Concurrent access to unique resources
® So far we didn’t need any special dead-lock risky coding
® Resource management is currently done at two levels:
® framework internals via thread-safe data structures and queues

® User code via a resource pool
(if an algorithm declares it requires shaky libA, then
no other algorithm needing shaky libA can be scheduled)

® Synchronization within the Framework

® Message queues with a listener thread waiting behind

Scheduler

» 77 2 two T |ets + X, B0 fb

® Scheduler keeps a state for each algorithm in each event
® Simple Finite State Machine
® Checks for state transitions can be delegated to other classes

® Allows for rather simple scheduler code

Required input data\\

}
)
)
)

Initial

DataReady

Control flow \\\ - \L
conditions ﬁ

Resource(s) and
Algorithm mstance
\ available f
TBB thread avallabl\\

ControlReady

Scheduled

Running

Done

&r/

AlgoPool

» 77 2 two T |ets + X, B0 fb

® Algorithm instances are kept in an AlgoPool

® |Instances are acquired when creating tbb::tasks and released
once task finished

® Number of algorithm instances depend on reentrancy of code:
| :non re-entrant;
n :non re-entrant; use n clones
-1 : perfectly re-entrant; same instance re-used

® The interface allows more complicated resource checking

® e.g.two algorithms using the same non re-entrant external
library

Scaling Behaviour

» 37 2 two T |ets + X, 60 fb

GaudiHive Speedup (Brunel, 100 evts)

% 25 # Simultaneous Evts =
S =0 5 yd
- | eess 30 (c|one) S /,-'
2 —— 20 3 e@@ ,,/
(0] = v
N 20 - 20 (clone) o i S X
t 5 518),
= Ol \\'\\\ #
a 5 (clone) Si 5 0\ //
3 —A— 3 S 2 W
o) g 3 (clone) RS ,,/ o
3 15 2 _ j = . i ..'_...,.-.... o
D 2 (clone) P GaudiHive Speedup (Brunel, 100 evts)
@ 1 (clone) } .;ﬁ:-ﬂ;"" " —
‘ @ -
— o F
o —
= 4.5 -
L -g —
5 -
I . e X ¥ :
A -
L | 35
T — s S
0 5 10 15 20 25 o M X 2
Thread Pool Size E ¥ ¥ -
25 5 Simultaneous Events
' 10 Threads
™ 215 Algorithms 74
1.5F
‘ 132
T T T T T T T T T T T I T T T A Y I
0 0.5 1 1.5 2 2.5 3 3.5 4

Algorithm Runtime [s]

see |EEE-NSS 2012 proceedings:
https://concurrency.web.cern.ch/sites/concurrency.web.cern.ch/files/NSS20[2-N43- | .pdf 8

https://indico.cern.ch/getFile.py/access?contribId=3&resId=0&materialId=slides&confId=209502
https://indico.cern.ch/getFile.py/access?contribId=3&resId=0&materialId=slides&confId=209502

- Demands to I/O system

» 77 > two T |ets + X, 60 b

® As in Amdahl’s law the slowest serial component limits the maximal
achievable speedup

® Slow algorithms can be ‘by-passed’ by processing more events in
parallel

® Serial I/O cannot as it is a shared resource across events

® application-side resource control/locking to avoid thread-safety
issues decrease performance

® nevertheless multi-event processing has the potential of hiding I/O
latencies

® We anticipate the I/O to be a limiting factor rather sooner than later

® Both for thread-safety and performance

~ Algorithm requirements

X, 60 1b

w7 »two T et

® Framework orchestrates work using a task-based approach
® Other scheduling might negatively interfere with that

® |Intra-algorithm parallelism has to be limited to using TBB tools

® No explicit thread handling

® If chunks of work are big enough -> split algorithm in multiple ones

® Algorithm interface
® Need to know required input; output not strictly needed but useful for sanity checks
® Stateless algorithms are a nice-to-have but we think that will never happen in real life
e Algorithm needs to declare its behaviour under cloning
® Are any external libraries used that are not thread safe!?

® Defining libraries and thus their clients as ‘unsafe’ could be integrated into the build process

10

- Other components

A 7T »two T|ets + X, 60 1D

® Conditions system
® Access to correct conditions for a given event can be handled like event data
® Request for data is forwarded to the proper conditions slot

® Problem to solve is how much and which condition data to keep in the
cache

® The actual logic to decide can be hidden from other components easily
® Statistical and Bookkeeping Data
e DQOM, Histogram handling, counters are all of the same kind
® Various approaches possible (locks, thread-safe build-ins, transactional

memory)

Conclusmns and Outlook

» 7 2 two T |ets + X, 60 1b "

® The prototype is very encouraging to provide concurrency at all levels
® Good scalability potential, although actual implementations are still very primitive
® We just started scratching the surface and the work in front of us is very large
® Concurrency-adaption of services already started, some will need proper re-engineering
® A lot of room for contributions!
® Re-usable patterns start to emerge
® Opportunity to share knowledge (if not implementations' skeletons) with other prototypes
e Started effort towards concurrent-development tools
® Static code analysis
® (Semi-)Automated output validation
® Workflow debugging (not only post-mortem)

® We are looking forward to see a realistic application running with the newly
developed components

12

