
CERN
Concurrency Framework

Project
(CF4Hep)

Danilo Piparo, Pere Mato Vila, Benedikt Hegner
CERN

1

Outline

• Our Vision

• Current Activities

• Components

• Summary

2

Our Vision

• Develop a full parallel framework for future experiments

• Supporting concurrency at multi-event level, among and inside algorithms

• we think all three levels are necessary

• Robustness over speed (some coarse-grain rather than lots of fine-grain locking)

• Design based on loosely coupled re-usable components

• Provide the re-usable components to the LHC experiments

• Components are designed as experiment agnostic

• Only constrains are choice of C++11 and TBB as assisting library

• Assist physicists in writing proper algorithms

• Support them with static code checking and good design patterns

• Community training to reach required knowledge (C++11, tools, ...)

3

Current Activities
• Event-loop component (working title GaudiHive)

• Forward-scheduling via dependency analysis
(i.e. start an algorithm once data there)

• Rather clear idea about the general design and
behaviour after Whiteboard demonstrator

• Started to work on Gaudi+LHCb
reconstruction (Brunel) as test case

• Concrete migration problems
popping up at interesting places

• (Near) Future

• Successfully run a slice of the full reco (MiniBrunel)

• Develop other component prototypes along the way

• Only after the full exercise we will decide on concrete implementation
(we dare throwing away prototypes!)

Whiteboard (TES)

Algorithm

Event NEvent N
Event SlotsExecutionExecutionExecution

Context

Algorithm
Algorithm

AlgSchedulertbb::task'

EventLoopMgr

AlgorithmPool

AlgorithmAlgorithmAlgorithm
(idle)

4

Highlights

• Forward scheduling

• Forward-scheduling works just perfectly

• Concurrent access to unique resources

• So far we didn’t need any special dead-lock risky coding

• Resource management is currently done at two levels:

• framework internals via thread-safe data structures and queues

• User code via a resource pool
(if an algorithm declares it requires shaky libA, then
no other algorithm needing shaky libA can be scheduled)

• Synchronization within the Framework

• Message queues with a listener thread waiting behind

5

Scheduler
• Scheduler keeps a state for each algorithm in each event

• Simple Finite State Machine

• Checks for state transitions can be delegated to other classes

• Allows for rather simple scheduler code

Initial

DataReady

ControlReady

Scheduled

Running

Done

Required input data
is available

Control flow
conditions

Resource(s) and
Algorithm instance

available

TBB thread available

6

AlgoPool

• Algorithm instances are kept in an AlgoPool

• Instances are acquired when creating tbb::tasks and released
once task finished

• Number of algorithm instances depend on reentrancy of code:
 1 : non re-entrant;
 n : non re-entrant; use n clones
 -1 : perfectly re-entrant; same instance re-used

• The interface allows more complicated resource checking

• e.g. two algorithms using the same non re-entrant external
library

7

Scaling Behaviour

see IEEE-NSS 2012 proceedings:
https://concurrency.web.cern.ch/sites/concurrency.web.cern.ch/files/NSS2012-N43-1.pdf

Obviously, cloning imposes a problem for internal
bookkeeping, including the use of counters or histograms. The
copies of these data have to be combined once synchronization
points such as 'end-of-run' and 'end-of-job' are reached.
However, as will be shown in section VI this cloning is only
necessary for a handful of algorithms. The reduction problem
will thus be solvable by adjusting a limited number of well-
defined parts of the code.

While in a single-event-framework the currently processed
event, including event data and corresponding detector
conditions data, can be treated as a global state, a multi-event
framework cannot make this assumption. GaudiHive uses the
concept of an ExecutionContext, which gives access to all
event specific data relevant for the application of an Algorithm
in a given event. The most prominent use of this feature is to
reference the proper event in the Whiteboard.

The prototype consists of an implementation of the
components shown in Fig. 2, together with the already existing
components such as the thread-safe logging mechanism. This
has allowed us to perform detailed studies of runtime behavior
and to measure speed-up factors that can be achieved. The
results of these measurements are described and discussed in
the following sections.

VI. PROTOTYPE RESULTS
In order to measure the expected performance of the

GaudiHive prototype in a simplified environment, real
implementations of the algorithms were replaced by
emulations that reproduced the expected runtimes. They
corresponded to a real workflow of the LHCb reconstruction
application (Brunel), which includes about 214 reconstruction
Algorithms and their data dependencies. The speedup
normalized to the serial version was measured with respect to
the size of the thread pool for different numbers of
simultaneous events, enabling and disabling cloning of
algorithms.

Fig. 3. Speedup normalized to the linear version as a function of the thread
pool size on a 12 physical (24 hardware threaded) core machine.

Fig. 3 shows the speedup that can be achieved, normalized
to the linear version, as a function of the thread pool size on a
12 physical (24 hardware threaded) core machine. A saturation
speedup factor of about 4 is reached without cloning
algorithms (solid lines). Once cloning is enabled, perfect
scaling is present up to 11 cores (the main thread was not used
to schedule algorithms), the degraded performance of
hardware threads is then evident. It is important to note how
the increase of the number of events simultaneously processed
improves parallelism and how saturation is reached at about
the value of 20 for the number of available physical threads on
this particular machine.

Another benefit linked to the usage of cloning is the

reduction of the event backlog, i.e. the difference, at a given
time, between the largest and smallest event number among
the ones of the events being processed and this is shown in
Fig. 4. Therefore we can guarantee an upper limit in the event
latency.

Fig. 4. Event backlog for the processing of 150 events, with 10 threads and
15 simultaneous events, in the presence (absence) of algorithm cloning.

Algorithm cloning requires additional memory resources,

but in order to achieve a good scaling, cloning of the
algorithms with the longest runtime may only be necessary.
Fig. 5 shows the final number of Algorithm instances as a
function of their runtime that result from the automatic cloning
strategy currently implemented in the prototype. An Algorithm
is cloned if it can be scheduled (i.e. all its required data items
are available) and all its instances are busy on other events.
Obviously, the longer the runtime of an Algorithm, the higher
is the probability of needing to clone it. It can be seen in Fig. 5
that the vast majority of Algorithms may not require to be
cloned. In addition, the ones that ended as two copies could
also be avoided without lost of performance.

Fig. 5. The final number of Algorithm instances as a function of their
runtime that result from the automatic cloning strategy currently implemented.

VII. PLANS
The results already obtained in scheduling Algorithms are

very encouraging but we are still far from running an
application with realistic Algorithms processing real physics
data and producing results that can be compared with the
sequential version of the application. We need to continue the
investigation on how to make all the elements of the Gaudi
framework thread-safe in an optimal manner. These elements
are Services, such as the histogram service or the random
number service, as well as the Tools used by the Algorithms,
and the asynchronous messages exchanged between
components that are called Incidents. Ideally we would like to
find re-useable patterns for thread-safe access to these shared
services and resources.

The strategy we are following is to start the adaptation of a
reduced workflow of the LHCb reconstruction program that
consists of about 30 Algorithms producing real results that can
be compared. This will give us enough variety of multi-
threading problems to solve without being overwhelmed by
the task. This mini-Brunel will also provide us a solid
benchmark to validate the implemented solutions. Later we
plan to extend it to the full Brunel workflow once it is working
satisfactory.

VIII. CONCLUSIONS
Applications will need to exploit increasing levels of

parallelism if we want to fully exploit the continuing
exponential CPU throughput gains. We are convinced that
introducing parallelism at the level of the framework has the
potential of scaling to large number of threads, or cores, and at
the same time spares the developers of Algorithms, i.e.
physicists, from having to develop new and complex parallel
code. This will allow us to preserve the huge investment made
in the existing LHC software.

Collaboration and sharing knowledge and findings between
HEP experiments and major projects in the early days on this
new endeavor is essential. Evolving the current sequential data
processing applications to concurrent ones is a major
paradigm shift, comparable to the introduction of object-

orientation that the HEP community made about 10-15 years
ago. The Concurrency Forum is serving the HEP community
in this new era. Promising technologies and programming
models (such as TBB) have been evaluated and a number of
important results have already been achieved.

 The GaudiHive prototype of the Gaudi Framework
introducing concurrency has been developed. At its current
state it is already an ideal test-bench for validating scheduling
strategies of typical HEP applications data-flows. We plan to
evolve the current prototype to be able to run real physics
applications and use this to learn all possible difficulties of
migrating originally written sequential code into a multi-
threaded environment.

A clear trend is emerging for the future of HEP data
processing applications. These new applications will need to
introduce parallelism inside CPU demanding Algorithms, be
able to run several independent Algorithms in parallel and at
the time be able to process several events in parallel. Only
adding the three levels we will manage to achieve the desired
scalability to fully exploit the new CPUs.

IX. ACKNOWLEDGMENT
We thank our colleagues Riccardo Mari Bianchi, Marco

Clemencic, Markus Frank and Illya Shapoval for the very
fruitful and often-lengthy discussions we have had during the
inception of this new framework.

We thank John Harvey for reviewing the manuscript.

X. REFERENCES
[1] J. Harvey et al, Addressing the challenges posed to HEP software due to

the emergence of new CPU architectures, paper submitted at Open
Symposium on European Strategy for Particle Physics 2012, Kraków,
Poland

[2] G. Barrand et al, GAUDI - A software architecture and framework for
building HEP data processing applications, Comput.Phys.Commun. 140
(2001) 45-55

[3] G. M. Amdahl, Spring Joint Computer Conference, Atlantic City, NJ,
USA, 18 - 20 Apr 1967, pp.483-485

[4] C. D. Jones et al., Multi-core aware applications in CMS, 2011 J. Phys.:
Conf. Ser. 331 042012

[5] B. Ramakrishna Rau, Joseph A. Fisher, Instruction-level parallel
processing: History, overview, and perspective, The Journal of
Supercomputing - TJS , vol. 7, no. 1, pp. 9-50, 1993

[6] V. Innocente, D. Piparo, T. Hauth, Development and Evaluation of
Vectorised and Multi-Core Event Reconstruction Algorithms within the
CMS Software Framework, Proceedings of CHEP2012, JPCS to appear

[7] G. Moore, Cramming more components onto integrated circuits,
Electronics, pp. 114–117, April 19, 1965.

[8] J. Reinders, Intel Threading Building Blocks, O’Reilly Media, 2007

8

https://indico.cern.ch/getFile.py/access?contribId=3&resId=0&materialId=slides&confId=209502
https://indico.cern.ch/getFile.py/access?contribId=3&resId=0&materialId=slides&confId=209502

Demands to I/O system

• As in Amdahl’s law the slowest serial component limits the maximal
achievable speedup

• Slow algorithms can be ‘by-passed’ by processing more events in
parallel

• Serial I/O cannot as it is a shared resource across events

• application-side resource control/locking to avoid thread-safety
issues decrease performance

• nevertheless multi-event processing has the potential of hiding I/O
latencies

• We anticipate the I/O to be a limiting factor rather sooner than later

• Both for thread-safety and performance
9

Algorithm requirements
• Framework orchestrates work using a task-based approach

• Other scheduling might negatively interfere with that

• Intra-algorithm parallelism has to be limited to using TBB tools

• No explicit thread handling

• If chunks of work are big enough -> split algorithm in multiple ones

• Algorithm interface

• Need to know required input; output not strictly needed but useful for sanity checks

• Stateless algorithms are a nice-to-have but we think that will never happen in real life

• Algorithm needs to declare its behaviour under cloning

• Are any external libraries used that are not thread safe?

• Defining libraries and thus their clients as ‘unsafe’ could be integrated into the build process

10

Other components

• Conditions system

• Access to correct conditions for a given event can be handled like event data

• Request for data is forwarded to the proper conditions slot

• Problem to solve is how much and which condition data to keep in the
cache

• The actual logic to decide can be hidden from other components easily

• Statistical and Bookkeeping Data

• DQM, Histogram handling, counters are all of the same kind

• Various approaches possible (locks, thread-safe build-ins, transactional
memory)

11

Conclusions and Outlook

• The prototype is very encouraging to provide concurrency at all levels

• Good scalability potential, although actual implementations are still very primitive

• We just started scratching the surface and the work in front of us is very large

• Concurrency-adaption of services already started, some will need proper re-engineering

• A lot of room for contributions!

• Re-usable patterns start to emerge

• Opportunity to share knowledge (if not implementations' skeletons) with other prototypes

• Started effort towards concurrent-development tools

• Static code analysis

• (Semi-)Automated output validation

• Workflow debugging (not only post-mortem)

• We are looking forward to see a realistic application running with the newly
developed components

12

