Intra-Module Parallelism

T. Hauth, V. Innocente, D. Piparo

Annual Concurrency Forum Meeting

Contents

LA =7 —two Tjets + X, 60 16"
* What is intra-module parallelism
* Why intra-module matters
* How to achieve it
* An example from CMS: triplet seeding

e Lessons learned and conclusions

Note:

The fundamental data processing unit (usually implemented as a C++ Class) will

be referred as to module according to the CMS nomenclature

4/2/13 2

~ Parallelism at Multiple Levels

T —»two T |ets + X, 60 1o
GOAL of a parallel framework:
* Achieve maximum rate of event processing

Take into account different type of parallelism, for example:

|) Concurrent execution of modules:

* Provided by the framework. Conditions: no simultaneous usage of thread unsafe

resources

2) Parallelism within single modules (intra-module parallelism):
* Feature of data processing algorithm’s implementation

* Provided by the developer(s) of the module itself

4/2/13 3

~ Why Intra-module Parallelism?

T —»two T jets + 60 1b’’

Bare simultaneous execution of serial modules has costs:
* Present data processing workflows (e.g. CMS reconstruction)
— Few modules can be parallel for a given event
— Long running modules™ that may only execute w/o anything else simultaneously
* Increase probability to schedule a module: process several events simultaneously
* More events in flight mean:

— Potential increase of event backlog (difference in DAQ timestamp between
newest and oldest event in flight — e.g. repercussions on detector conditions
management)

— More memory needed CMS Reconstruction

30

* Or “sequences” of

modules
4/2/13

0 8 16 24 32
Plot: C. Jones

N

Intra-module parallelism: % 25

a “memory reduction 3
E . Photon

. (X} .

technique™ [conversion
— 10 .
© Tracking finding
Q° = ! 1
Y 0 - N L — L L I/ \ Z
o
1S

Average timeline of execution for an event [s]

~ Why Intra-module Parallelism?

»two T jets 60 1o’

Intra-module parallelism allows to use resources w/o increasing memory

70

2 Sérial tralcking
Toy model of a reco job in a parallel LIE " —— 8threads 40 on avg
framework: D 50 /
« 64 cores machine C?g aof :
- Tracking: 60% of runtime = O - 12 on avg
. Serial (1 thread) OR ol /
8 threads Lo MR A Ak
« Other modules: 40% of runtime y | | |
° 4 threadS 0 50 100 150 200

Time [arb. units]

Event size in memory: conservative rough estimate for CMS: ~150MB / evt
The interplay of module and intra-module parallelism is the target to aim at.

* Intra-module parallelism alone is not enough to efficiently use all resources.

4/2/13 5

Is This a Silver Bullet!?

* s two tjets + X, 60 1b"

No. Intra-module parallelism has drawbacks
A handful of modules could benefit from it

— Overhead: not profitable if module runtime too short
* Module developers need important skills

— Code must be correct (not a trivial requirement)

— Increase of code complexity
* Noticeable validation effort involved:

— ldentical results wrt serial version may not be achieved

— Deep understanding of the physics involved to declare results

correct (or correct enough or compatible with the previous one)

4/2/13 6

Achieving Intra-Module Parallelism

01b’

T —»two Tjets + X

* Technology adopted: should be the same used by the framework for

module parallelism

* Several sub-frameworks, developed separately maybe relying on
different technologies: NO GO

TBB is a technology suited in this case. It supports:
— Based on a task based programming model
— Handy tools like parallel_for construct

— TBB scheduler handles tasks holding a module and tasks spawned

by parallel_for.Tasks spawned within task get proper priority.

4/2/13 7

An example from CMS:Track Seeding

T -hvorj;ts+»x.601b'

- About 10% of the overall runtime of the reconstruction
- Match pairs of tracker hits with a third one

- Parallelise loop on pairs using TBB parallel_for within CMSSW
- Compatible with parallel CMSSWV design!

“Work”

g Within a single
Loop over Hit-Pairs _ _ g
Iteration: no
Loop over Detector Layers acce§§ to
Fork and Join pattern: > Load Hits from this layer Z(i)snkdllﬁl(())ns,

Iy Paritian ingus Loop over Layer Hits

2) Do work on different _
Is compatible?
threads v

Yes!
3) Merge results '
Add tripl. To result

4/2/13 8

An example from CMS: Track Seeding

T —»two T |ots + X, 60 1b’’

Good scaling up to 5 threads (40 PileUp events, probably better with
higher occupancies)

Memory overhead verified to be negligible:
— Additional RSS: ~2MB/thread

Validation accomplished: results Triplet seeding speedup

identical in serial and parallel case

«— PixelTriplet parallel |
«~—« Perfect scaling

— Order of processed pairs S A

could be preserved
Ready for production

Speedup

of threads
4/2/13 9

Lesson Learned

4 > 7 —»two Tjets + X, 60 =%

Intra-module parallelism: increases processing speed with ~constant

memory footprint
Full potential reached only in combination with module parallelism

Sizeable effort of developers may be needed: physics understanding,

coding, validation
CMS triplet seeding parallelised with TBB parallel_for construct:
— Successful example of the fork-join pattern

No general rule to achieve intra-module parallelism: case-by-case

study

4/2/13 10

Conclusions

A - TtT —»two Tjets + X, 60 1o

- Interplay of module and intra-module parallelism: key feature of

forthcoming frameworks
- Technology to achieve intra-module parallelism must be provided by
the framework

— Avoid several “custom mini-frameworks”

— TBB is a good candidate: lightweight tasks, handy high level
constructs (e.g. parallel_for), smart scheduler
- We must not parallelise all our modules:

— Focus on ideal candidates: modules or chain of modules with long

runtimes which may run only w/o anything in parallel

4/2/13 11

4/2/13 12

~.Parallel Triplet Seeding

Tripl. block 1

Tripl. Block 2

\

Tripl. Block 3 - Triplets

Tripl. Block N

- Preserve the ordering of output collection

- Hit-pairs of input collection split in equally sized blocks

- A private result list is associated with every block
o Mmerged in the correct order into the global result list
o No explicit sorting needed!

4/2/13 13

Hardware Threading: Food for Thought

Many of the CPUs at our computing centres have Hyperthreading
With a multi-threaded application we can use more (Hyperthreaded)
Cores with very little memory overhead (less than 2 MB per Thread)

Intel Core i7-3930K CPU at 3.20GHz
6 Physical Cores (12 Hyperthreaded)

16 GB RAM
Scientific Linux 6.2
Same 50 High-Pileup Data Events

Runtime of 6 Single-Threaded CMSSW Applications: 14.40 min +/- 0.10 min
Runtime of 6 Two-Threaded CMSSW Applications: 13.79 min +/- 0.08 min

« Hyperthreading - decrease in runtime of 4.3 %
« Very close theoretical decrease of 5% with 2 threads (10%/2).
o Not physical but hyperthreaded cores!

A possible way to better exploit the already purchased resources?

4/2/13 14

