
Intra-Module Parallelism

T. Hauth, V. Innocente, D. Piparo
Annual Concurrency Forum Meeting

•  What is intra-module parallelism	

•  Why intra-module matters	

•  How to achieve it	

•  An example from CMS: triplet seeding	

•  Lessons learned and conclusions	

	

	

4/2/13 2

Note:	

The fundamental data processing unit (usually implemented as a C++ Class) will

be referred as to module according to the CMS nomenclature	

GOAL of a parallel framework: 	

•  Achieve maximum rate of event processing	

Take into account different type of parallelism, for example:	

	

 1) Concurrent execution of modules:	

•  Provided by the framework. Conditions: no simultaneous usage of thread unsafe

resources	

	

 2) Parallelism within single modules (intra-module parallelism):	

•  Feature of data processing algorithm’s implementation	

•  Provided by the developer(s) of the module itself	

4/2/13 3

Average timeline of execution for an event [s] #
of

 p
ar

al
le

l m
od

ul
es

Tracking

Photon
conversion

finding

CMS Reconstruction

Bare simultaneous execution of serial modules has costs:	

•  Present data processing workflows (e.g. CMS reconstruction)	

–  Few modules can be parallel for a given event	

–  Long running modules* that may only execute w/o anything else simultaneously	

•  Increase probability to schedule a module: process several events simultaneously 	

•  More events in flight mean:	

–  Potential increase of event backlog (difference in DAQ timestamp between
newest and oldest event in flight – e.g. repercussions on detector conditions
management)	

–  More memory needed	

4/2/13 4

Intra-module parallelism:

a “memory reduction

technique”?	

Plot: C. Jones
* Or “sequences” of
modules	

4/2/13 5

Intra-module parallelism allows to use resources w/o increasing memory	

Event size in memory: conservative rough estimate for CMS: ~150MB / evt	

The interplay of module and intra-module parallelism is the target to aim at.	

•  Intra-module parallelism alone is not enough to efficiently use all resources.	

Time [arb. units]

Lo
ad

ed
 E

vt
s

Serial tracking
8 threads Toy model of a reco job in a parallel

framework:!
•  64 cores machine!
•  Tracking: 60% of runtime!

•  Serial (1 thread) OR!
•  8 threads!

•  Other modules: 40% of runtime!
•  4 threads!

!

40 on avg

12 on avg

No. Intra-module parallelism has drawbacks 	

A handful of modules could benefit from it	

–  Overhead: not profitable if module runtime too short	

•  Module developers need important skills	

–  Code must be correct (not a trivial requirement)	

–  Increase of code complexity	

•  Noticeable validation effort involved:	

–  Identical results wrt serial version may not be achieved	

–  Deep understanding of the physics involved to declare results

correct (or correct enough or compatible with the previous one)	

	

4/2/13 6

•  Technology adopted: should be the same used by the framework for

module parallelism	

•  Several sub-frameworks, developed separately maybe relying on

different technologies: NO GO	

	

TBB is a technology suited in this case. It supports:	

–  Based on a task based programming model	

–  Handy tools like parallel_for construct	

–  TBB scheduler handles tasks holding a module and tasks spawned

by parallel_for. Tasks spawned within task get proper priority.	

4/2/13 7

4/2/13 8

•  About 10% of the overall runtime of the reconstruction	

•  Match pairs of tracker hits with a third one	

•  Parallelise loop on pairs using TBB parallel_for within CMSSW	

•  Compatible with parallel CMSSW design!	

Hit-Pairs

Triplets

 “Work”
 Loop over Hit-Pairs

 Loop over Detector Layers
 > Load Hits from this layer

 Loop over Layer Hits

Add tripl. To result

Yes!

Is compatible?

Fork and Join pattern: 	

1)  Partition input	

2)  Do work on different

threads	

3)  Merge results	

Within a single
iteration: no
access to
conditions,
disk I/O..

4/2/13 9

•  Good scaling up to 5 threads (40 PileUp events, probably better with
higher occupancies)	

•  Memory overhead verified to be negligible:	

–  Additional RSS: ~2MB/thread	

•  Validation accomplished: results 	

identical in serial and parallel case	

–  Order of processed pairs 	

could be preserved	

•  Ready for production	

Triplet seeding speedup

of threads

Sp
ee

du
p

4/2/13 10

•  Intra-module parallelism: increases processing speed with ~constant
memory footprint	

•  Full potential reached only in combination with module parallelism	

•  Sizeable effort of developers may be needed: physics understanding,
coding, validation	

•  CMS triplet seeding parallelised with TBB parallel_for construct:	

–  Successful example of the fork-join pattern	

•  No general rule to achieve intra-module parallelism: case-by-case

study	

4/2/13 11

•  Interplay of module and intra-module parallelism: key feature of
forthcoming frameworks	

•  Technology to achieve intra-module parallelism must be provided by
the framework	

–  Avoid several “custom mini-frameworks”	

–  TBB is a good candidate: lightweight tasks, handy high level
constructs (e.g. parallel_for), smart scheduler	

•  We must not parallelise all our modules:	

–  Focus on ideal candidates: modules or chain of modules with long
runtimes which may run only w/o anything in parallel	

4/2/13 12

4/2/13 13

•  Preserve the ordering of output collection
•  Hit-pairs of input collection split in equally sized blocks
•  A private result list is associated with every block

o  merged in the correct order into the global result list
o  No explicit sorting needed!

Executed in Parallel

Hit-Pairs

Pairs block 1

Pairs block 2

Pairs block 3

Pairs block N

…

Tripl. block 1

Tripl. Block 2

Tripl. Block 3

Tripl. Block N

…

Triplets

do work

do work

do work

do work

4/2/13 14

•  Intel Core i7-3930K CPU at 3.20GHz
•  6 Physical Cores (12 Hyperthreaded)
•  16 GB RAM
•  Scientific Linux 6.2
•  Same 50 High-Pileup Data Events

•  Many of the CPUs at our computing centres have Hyperthreading
•  With a multi-threaded application we can use more (Hyperthreaded)

Cores with very little memory overhead (less than 2 MB per Thread)

Runtime of 6 Single-Threaded CMSSW Applications: 14.40 min +/- 0.10 min
Runtime of 6 Two-Threaded CMSSW Applications: 13.79 min +/- 0.08 min

•  Hyperthreading à decrease in runtime of 4.3 %
•  Very close theoretical decrease of 5% with 2 threads (10%/2).

o  Not physical but hyperthreaded cores!

A possible way to better exploit the already purchased resources?

