# Technology Watch and Evaluations

Marc Paterno and V. Daniel Elvira Fermilab

2<sup>nd</sup> Annual Concurrency Forum Meeting

- Thanks to all our speakers
- It is not possible to do justice to each talk in a single slide

But we'll try our best...

## Practical Results of the Intel MIC/Xeon Phi Project at CERN openlab (A. Nowak, CERN openlab)

- Ported 3 real-world HEP applications to run on preproduction MIC architecture: ALICE track fitter, MLFit, Geant4-MT prototype
- Porting times from <1 to ~month; tuning times <1 week to several weeks</p>
- Optimized applications surpass dual-socket Xeon performance
- Non-optimized applications approximately match single-core Xeon performance
- For best results, need to think of vectorization, parallelization (threads, MPI) and small memory usage

## Brief correlation study on x86 compiler flags and performance events (A. Nowak, CERN openlab)

- Question addressed: Can we combine knowledge about compiler flags and the response they produce in hardware?
- Results of similar experiments were difficult to reproduce
- It is possible to semi-automatically characterize benchmarks, and to establish which compiler flags are likely to reduce a particular [performance] bottleneck
- It is difficult to predict with good accuracy which compiler flags will improve a particular workload.
- Full report at http://openlab.web.cern.ch/sites/openlab.web.cern.ch/files/technical\_documents/CompilerFlags\_Review2.pdf.

## Accelerating Science with Kepler and CUDA 5 (J. Bentz, Nvidia)

- Major new features: SMX, Hyper-Q, Dynamic Parallelism
- SMX cores: 6 times as many, 3x perf/watt
- Hyper-Q: Run up to 32 simultaneous MPI tasks on GPU
- DP: GPU can launch additional threads dynamically
- Up to 255 registers per thread (4x Fermi's limit)
- Variety of math libraries available in CUDA 5 toolkit
- Much additional information available as extra slides, at the workshop Indico site

#### Programming Models for Intel Xeon Processors and Intel Xeon Phi Coprocessors (S. McMillan, Intel)

- Concentrated on use of Xeon Phi as a coprocessor
- 60 cores, wide vector units
- Different modes of use:
  - as "cluster on chip"
  - Like an accelerator, "many-core hosted"
  - Symmetric use of host Xeon and coprocessor Xeon Phi
- Supports multiple parallel programming technologies, including Threading Building Blocks, MPI, and OpenMP.
- Can port from x86 to Phi fairly cheaply, and then optimize incrementally

## Transforming Geant4 for the Future (B. Lucas, USC)

- The US Department of Energy (DOE) charged Bob Lucas (Advanced Scientific Computing for Research – ASCR) and Rob Roser (High Energy Physics – HEP) to co-chair US ASCR/HEP workshop to discuss "Transforming G4 for the Future"
- Final report available at <a href="http://science.energy.gov/~/media/ascr/pdf/research/scidac/GEANT4-final.pdf">http://science.energy.gov/~/media/ascr/pdf/research/scidac/GEANT4-final.pdf</a>
  - 48 participants from HEP, ASCR, experiments.
- ASCR and HEP should investigate together
  - Optimize today's Geant4 for immediate impact
  - Refactor and re-engineer Geant4 for future computing systems
  - Address challenges from petabytes of data generated
- The "Concurrency Forum" and the Geant4 Collaboration are the natural communities for this effort to be discussed and integrated to the international effort

## Performance Measurement Tools for Parallel Applications (S. Jun, Fermilab)

- Included in requirements: (1) support of multithreaded applications, (2) support of Linux, (3) no source code instrumentation, (4) advanced analysis (tracing, callgraphs)
- Short list of toolkits: HPCToolkit, Open | SpeedShop, TAU, nvvp [for CUDA profiling]
- Each tool has its strengths, none does everything
- Performance analysis require domain knowledge as well as computing system knowledge
- Expect to benefit from collaboration with ASCR institutes