
Reduction of the memory consumption per event in
current frameworks and tools in order to increase throughput.
Limits: we can probably save of the order of up to 50%

Explored techniques:
•  (Late) forking exploiting page-wise copy-on-write
•  Worker threads spawned after initialization (requires thread-safeness)
•  Kernel SamePage Merging
•  Kernel-compressed memory using a virtual swap device
•  X32-ABI
•  Clever job submission can increase the throughput of a machine

It helps us to better understand the
application’s resource utilization patterns

•  Separate read-only allocations from read-write allocations (e.g. caches)
•  Investigate why some of the large memory allocations are 0-initialized
•  In the course of submitting mixed workloads, we learn about the scalability of

applications
•  From the swap statistics, we can learn about the applications’

memory working set

1

Next steps:

•  We need to be able to relate the reduction in memory consumption
to an increase in throughput

 A common many-core box used to run benchmarks?
•  We can explore the possibility of a “HEP-friendly” Linux kernel

•  Supports memory saving features
•  Virtualization-friendly

•  Investigate the effort required for the X-32 platform
•  Igprof can possibly be extended in order to detect the source of large,

zero-initialized blocks

2

