
Parallelization Potential in
ROOT Math Libraries

Lorenzo Moneta (CERN)

Annual Concurrency Forum Meeting, 4-6 February 2013, Fermilab

Annual Concurrency Forum Meeting, 4-6 Feb 2013, Fermilab

Outline
Vectorization

Vc library
Potential for vectorization of core libraries using Vc

Parallelization in data analysis (fitting)
low level with vectorization (new data structures)
multi-threads
experience gain from prototype studies

Future plans for concurrent and parallel libraries
Conclusions

2

Annual Concurrency Forum Meeting, 4-6 Feb 2013, Fermilab

Vectorization
SIMD processing for performing many operation in parallel

size of registers depending on architectures
SSE : 128 bits : 2 double’s or 4 float’s
AVX: 256bit : 4 double’s or 8 float’s)

Input data must be organized in vectors to perform operations
simultaneously
Automatically compiler can auto-vectorize loops

require no iteration dependency and no branching
Alternatively use of intrinsic (but code will look like assembly)
Can be exploited in low level libraries

no racing problems as in multi-thread
independent parallelization dimension

Size of registers expected to increase in future hardware
3

Annual Concurrency Forum Meeting, 4-6 Feb 2013, Fermilab

Auto-Vectorization
Compiler can vectorize the loops automatically, but

require data to be organized in vectors
no iteration dependence
no branching (if statement).
Much better in latest compiler versions
enabled with -O3 or with -O2 -ftree-vectorize

Disadvantages:
need to change way passing data to functions
double f(double x) ⇒ void f(const double *x, double *r)

need to manage lists of results
can result in substantial code changes

4

Annual Concurrency Forum Meeting, 4-6 Feb 2013, Fermilab

Vc Library
C++ wrapper library around intrinsic for using SIMD

developed by M. Kretz (Goethe University Frankfurt)
minimal overhead by using template classes and inline functions

Provides vector classes (Vc::float_v, Vc::double_v) with semantics
as built_in types

one can use double_v as a double
all basic operations between doubles are supported (+,-,/,*)
provides also replacement for math functions (sqrt, pow, exp, log, sin,...)

Possible to exploit vectorization without using intrinsic and with
minimal code changes

e.g. replace double -> double_v in functions
easy to do in classes or functions templated on the value type

e.g ROOT classes in GenVector (3D or Lorentz vectors) or in SMatrix

5

Annual Concurrency Forum Meeting, 4-6 Feb 2013, Fermilab

Evaluation of Vc
Use Vc to vectorize operation on a list of object (physics vectors,
matrices, ...) and not within the object
a LorenzVector<PxPyPzE4D< double> > becomes a LorenzVector<PxPyPzE4D<
Vc::double_v> >,

perform loop on list of objects (vectors, matrices), which is reduced by
size of double_v (NITER = NITER / double_v::Size)

do not attempt parallelization within objects
Tested on some basic operation between LorenzVectors:

Addition of vectors, scaling, invariant mass
Test using different compilation flags and Vc implementations
(VC_IMPL = Scalar, SSE, AVX)
Compare results with auto-vectorization

compiling (using double) with -mavx -O3 -fast-math
reference is code compiled with -O2
use gcc 4.7.2

6

Annual Concurrency Forum Meeting, 4-6 Feb 2013, Fermilab

Vector Operations
Speed-up versus scalar version (-O2)

Auto-vectorization works well simple operations, but not for
more complex ones (e.g. when one needs to call Math functions)
Vector lists must be not too large to avoid cache effects (used
N=100)

7

Speed-up auto-vectorization
-Ofast -mavx

Vc scalar
(auto-vec.) Vc SSE Vc AVX

Addition
v3 = v1+v2

Scaling
V2 = v1 * a
Inv. Mass
M(v1,v2)

Boost

5.0 5 2.0 3.3

6.6 7.0 2.0 3.6

1.3 1.3 1.8 2.0

1.02 1.02 2.0 2.1

Annual Concurrency Forum Meeting, 4-6 Feb 2013, Fermilab

Mathematical Functions
Compare performances in evaluating Math Functions
Use also VDT Mathematical library (by D. Piparo)

transcendental mathematical functions which can be auto-vectorized
but require a different interface: std::sin(double x)
⇒ void vdt::fast_sinv(int n,const double *x, double *r)

8

Speed-up auto-vect.
-Ofast -mavx

Vc scalar
(auto-vec.) Vc SSE Vc AVX VDT AVX

sqrt (x)

exp(x)

log(x)

sin(x)

atan(x)

2.4 2.4 2.3 2.4 2.4

1.0 1.0 2.1 4.9 4.1

1.0 1.0 3.8 4.9 5.4

1.0 1.0 0.4 1.2 1.6

1.0 1.0 1.5 1.3 1.6

Annual Concurrency Forum Meeting, 4-6 Feb 2013, Fermilab

SMatrix Operations
Perform operations in SMatrix using Vc::double_v instead
of double

speed-up obtained for processing operations on a list of 100
SMatrix<double,5,5> and SVector<double,5>

9

Speed-up auto-vect.
-Ofast -mavx

Vc scalar
(auto-vec.)

Vc SSE Vc AVX

v * v

v * M

M * M

vt * M *v

At * M * A

Inversion

1.05 0.8 1.2 1.6

1.2 0.7 1.5 1.6

1.1 0.6 1.1 1.5

1.0 0.8 1.5 2.1

1.1 0.9 2.0 2.3

1.0 0.9 1.7 2.8

Annual Concurrency Forum Meeting, 4-6 Feb 2013, Fermilab

Kalman Filter Test
Typical operation in track reconstruction

very time consuming
inversion + several matrix-vector multiplications

Clear advantage in using Vc
SMatrix code works fine using double_v as value_type
good boost in performance in an already performant code (5-10
times faster than CLHEP)

10

Speed-up auto-vect.
-Ofast -mavx

Vc scalar
(auto-vec.) Vc SSE Vc AVX

2 x 5 matrix

5 x 5 matrix

1.3 1.3 2.2 3.3

1.1 1.03 2.0 3.2

Annual Concurrency Forum Meeting, 4-6 Feb 2013, Fermilab

Vectorization in Fitting
Vectorize chi-square calculation in fitting ROOT histograms

work performed by M. Borinsky (summer student 2012)

Required change in data set layout and in functions
from array of structure to structure of arrays for input data
vectorized function interface (TF1)

11

Annual Concurrency Forum Meeting, 4-6 Feb 2013, Fermilab

ROOT Fitting Tests
Observed performance gain from new data structure and
from vectorization using VDT library

Test also using Vc: similar speed-up results (~ 3.5x) but with
less code changes (would be easy if fit functions are templated)

12

Fi
tti

ng
 ti

m
e

old im
plementation

new implementation

new vectorized
implementation

Performance gains on
AVX (E5-2690), gcc 4.7
old ⇒ new : 2.7x
new ⇒ vec: 1.5x
Total speed-up: 4.0x

Annual Concurrency Forum Meeting, 4-6 Feb 2013, Fermilab

Use also multi-threads (OpenMP) for parallelizing the chi2 sum

Parallelization of Fitting

13

Using dynamic scheduling in OpenMP

Test using Gaussian model function
(1 dimensional data set)

Only some minimal code changes to be
thread-safe

Annual Concurrency Forum Meeting, 4-6 Feb 2013, Fermilab

OpenLab Fitting Prototype

Current RooFit code:
loop over N events and
evaluate the full model for
every event and perform
sum at the end.

Parallelize reduction
requires thread-safety of
code: need to copy
everything except the data.

14

use a realistic data analysis model from B physics
evaluate different architectures in collaboration with Intel

Parallelize likelihood evaluation using RooFit (by A. Lazzaro)

Annual Concurrency Forum Meeting, 4-6 Feb 2013, Fermilab

OpenLab Fitting Prototype
Evaluate low-level PDF for an array of events
Produce array of results:

vectorization + parallelization with OpenMP

15

Annual Concurrency Forum Meeting, 4-6 Feb 2013, Fermilab

Results from OpenLab Prototype

Low Level Parallelization
speed-up from vectorization (~ 1.7 on SSE)
speed-up from multi-threads:

7.6x for 12 threads and 8.9x with 24 threads
overhead from having several OpenMP regions
cache memory effects in dealing with arrays

High-Level parallelization with block-splitting (evaluation
only on a sub-group of events) for vectorization

OpenMP only at root of NLL
Speed-up: 10.9x with 12 threads

Race condition problems solved by several changes in original code,
which are difficult to port in production code

16

Annual Concurrency Forum Meeting, 4-6 Feb 2013, Fermilab

Parallelization in Fitting
Fitting/Minimization is one of the most CPU consuming tasks
in data analysis

to produce Higgs combination results, many minimizations of
complex likelihood functions (> 200 parameters) need to be done
currently run many jobs in parallel on the grid
memory usage could become problematic with increase complexity of
the models (more parameters, more data, etc..)
need more efficient evaluation of and use low-level parallelization

17

Annual Concurrency Forum Meeting, 4-6 Feb 2013, Fermilab

Parallelization in Histogram
Speed-up operation on ROOT histograms like scaling or
merging (add) using multi-threads (openMP)

Improve also performances by using more efficient serial code
in several other histogram functions (work by I.G. Bucur)

18

speed-up using 8 threads

of bins

Annual Concurrency Forum Meeting, 4-6 Feb 2013, Fermilab

Future Plans
Distributed Vc library as part of ROOT

already existing in a svn branch
support using Vc in SMatrix and GenVector packages
investigate if could be used in other libraries (e.g. TMatrix)

Support also auto-vectorization in low-level libraries
include also VDT for vectorized Math functions

Change data structure and function interface for vectorization in
fitting
Support concurrency in RooFit will be not easy

investigate alternatives way of implementing complex models for fitting by
keeping same user interface

Investigate parallelization also in other high level libraries (e.g. TMVA) and
algorithms (e.g. numerical integration)
Provide parallel random number generators

19

Annual Concurrency Forum Meeting, 4-6 Feb 2013, Fermilab

Conclusions
Big potential of using vectorization in speeding-up Math
libraries

performance gains expected for simulation, reconstruction and data
analysis

Plan to provide thread-safe concurrent implementations of high
level tools and algorithms

occasion also to improve code and make it more efficient
less virtual functions and using more templates and meta-
programming

Would be nice to start using C++11 for implementing the new
code

need experiments to move to it as well
20

Annual Concurrency Forum Meeting, 4-6 Feb 2013, Fermilab

References
Vc

http://code.compeng.uni-frankfurt.de/projects/vc/

M. Kretz, V. Lindenstruth, Vc, a C++ Library for explicit vectorization
M. Kretz, Efficient Use of Multi- and Many-Core Systems with Vectorization and
Multithreading, Diplomarbeit (2009)

VDT
see https://svnweb.cern.ch/trac/vdt

ROOT fitting studies (M. Borinsky)
See summer student report: http://seal.web.cern.ch/seal/documents/mathlib/MichaelBorinsky_report.pdf

OpenLab parallelization studies:
See Forum presentation by A. Lazzaro and various reports ,latest ones:

S. Jarp et al., Parallel Likelihood Function Evaluation on Heterogeneous Many-core Systems,
proceeding of International Conference on Parallel Computing, Ghent, Belgium, 2011. EPRINT:
CERN-IT-2011-012

S. Jarp et al., Parallel Likelihood fits with OpenMP and CUDA, Journal of Physics: Conference
Series EPRINT: CERN-IT-2011-009

21

http://code.compeng.uni-frankfurt.de/projects/vc/
http://code.compeng.uni-frankfurt.de/projects/vc/
http://code.compeng.uni-frankfurt.de/attachments/13/Diplomarbeit.pdf
http://code.compeng.uni-frankfurt.de/attachments/13/Diplomarbeit.pdf
http://code.compeng.uni-frankfurt.de/attachments/13/Diplomarbeit.pdf
http://code.compeng.uni-frankfurt.de/attachments/13/Diplomarbeit.pdf
http://code.compeng.uni-frankfurt.de/attachments/13/Diplomarbeit.pdf
http://code.compeng.uni-frankfurt.de/attachments/13/Diplomarbeit.pdf
https://svnweb.cern.ch/trac/vdt
https://svnweb.cern.ch/trac/vdt
http://seal.web.cern.ch/seal/documents/mathlib/MichaelBorinsky_report.pdf
http://seal.web.cern.ch/seal/documents/mathlib/MichaelBorinsky_report.pdf
http://indico.cern.ch/getFile.py/access?contribId=3&resId=1&materialId=slides&confId=178121
http://indico.cern.ch/getFile.py/access?contribId=3&resId=1&materialId=slides&confId=178121
http://cdsweb.cern.ch/record/1395088/files/CERN-IT-2011-012.pdf
http://cdsweb.cern.ch/record/1395088/files/CERN-IT-2011-012.pdf
http://cdsweb.cern.ch/record/1395088/files/CERN-IT-2011-012.pdf
http://cdsweb.cern.ch/record/1395088/files/CERN-IT-2011-012.pdf
http://cdsweb.cern.ch/record/1328927/files/CERN-IT-2011-009.pdf
http://cdsweb.cern.ch/record/1328927/files/CERN-IT-2011-009.pdf

Extra Slides

Annual Concurrency Forum Meeting, 4-6 Feb 2013, Fermilab

2nd#CERN#openlab/Intel#Workshop#on#
Numerical#CompuFng# 6#

THE VDT MATHEMATICAL LIBRARY"
A collection of transcendental mathematical functions"

–  Which are fast and approximate !
–  Licenced under LGPL3"
–  Which can be used in loops autovectorised by the compiler"

The functions implemented at the moment are (double and
single precision):"

!  Exp, Log"
!  (A)Sin, (A)Cos, (A)Tan"
!  1/√ (different precision levels) "

Signatures (identical for single precision):"
1.  double (double) – referred to as scalar signature"
2.  void(unsigned int, double*, double*) – referred to as array

signature (just a simple for loop calling the scalar version)"

Single#and#Double#precision#
implementaFons#are#different.#

from presentation by D. Piparo at OpenLab WS 23

http://%20http://indico.cern.ch/getFile.py/access?contribId=4&sessionId=9&resId=0&materialId=slides&confId=202688
http://%20http://indico.cern.ch/getFile.py/access?contribId=4&sessionId=9&resId=0&materialId=slides&confId=202688

Annual Concurrency Forum Meeting, 4-6 Feb 2013, Fermilab

ROOT Vector Classes
New ROOT physics vector classes

GenVector package (see http://project-mathlibs.web.cern.ch/project-mathlibs/sw/html/Vector.html)
generic coordinate system concept
vector template class on coordinate system type in 2,3 and 4D

24

Advantage in performances
using generic physics vector
compared to TLorentzVector

 LorentzVector<PxPyPzE<double> > v1;

 LorentzVector<PtEtaPhiE<double> > v2;

 LorentzVector<PxPyPzM<double> > v3;

 LorentzVector<PtEtaPhiM<double> > v4;

Fast
creation

time

Minimize
temp

objects

http://project-mathlibs.web.cern.ch/project-mathlibs/sw/html/Vector.html
http://project-mathlibs.web.cern.ch/project-mathlibs/sw/html/Vector.html

Annual Concurrency Forum Meeting, 4-6 Feb 2013, Fermilab

Matrix Operations
✦Old Comparison tests ROOT (TMatrix/SMatrix) and CLHEP (HepMatrix)

✦ lxplus (Intel dual-core 64 bits) running slc4 with gcc 3.4.6

25

Annual Concurrency Forum Meeting, 4-6 Feb 2013, Fermilab

Fitting Tests Using Vc
Performed a similar fit as before:

using Vc we do no really need big changes in data-
structure

gain ~ 3.5 on AVX (1.8 on SSE)
probably due to faster exp and log functions

with VDT and vectorized data structure
gain ~ 4 on AVX
but reduced to 2 in case of large data sizes

probably due to cache effects given by managing large
arrays of results
similar effect seen in OpenLab implementation

26

Annual Concurrency Forum Meeting, 4-6 Feb 2013, Fermilab

Parallelization: limitations
 Accessing the arrays of results: overlap computation and memory

accesses
 The amount of arrays to manage becomes consistent in case of complex

models and large data samples
• Crucial to have an optimal treatment of the data inside the cache memories

 Effect particularly important for PDFs with simple function, like polynomials,
and for the normalization loop (i.e. a product) and composite PDFs
• Composite PDFs have to combine several arrays of results with just a simple

operation (i.e. products and sums)
• Fast computation, not enough time to fetch the data from memory

19 Alfio Lazzaro (alfio.lazzaro@cern.ch)

24 SMT
threads

27

Annual Concurrency Forum Meeting, 4-6 Feb 2013, Fermilab 28

Implementation
 Take benefit from the code

optimizations
 No virtual functions
 Inlining of the functions

 Evaluation of functions over arrays
of read-only data
 Balanced independent iterations

 Input data are shared in memory
 Memory footprint increases with the

number of events and number of
PDFs, but not with the number of
threads

 Possible to exploit vectorization
 Using Intel compiler for the auto-

vectorization of the loops (using
svml library by Intel)

 Very easy parallelization with
OpenMP
 Easy thread-safety, limiting the

parallelization to the PDF loops

NOTE: error checking inside the
loops with output warnings will
destroy vectorization and
parallelization

16 Alfio Lazzaro (alfio.lazzaro@cern.ch)

Annual Concurrency Forum Meeting, 4-6 Feb 2013, Fermilab

Data Analysis Parallelization
Possible various level of parallelizations:

Evaluation of probability density functions for observed data points
Loop on events for computing log-likelihood
Algorithms (e.g Minuit) require multiple likelihood evaluations
Loop on toy data analysis (on various likelihood minimization)
Repetition of same analysis on different inputs (analysis points)

What is possible now:
Using PROOF for toy data analysis (RooFit/RooStats)
Parallelization of log-likelihood using multi-processes in RooFit (using PROOF or
fork)
Parallelization in Minuit with MPI or multi-thread (OpenMP)

multi-thread implementation requires thread-safety of lower level code.
difficult to achieve in case of complex models (e.g. when built using RooFit)
good scalability only for large number of parameters (only gradient evaluation
is parallelized)

29

