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Detector Simulation on GPU?
● Geant4 HEP applications

● highly sequential/event-level 
● complex/memory intensive

● Rules of GPU computing
● minimize data transfer
● keep arithmetic intensity
● re-use data

● Major challenges
● kernel divergence
● memory bandwidth
● work balance (CPU-GPU) 

CUDA/OpenCL/OpenAcc

GPU
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Problem Statement

● A massively parallel particle transportation engine

● Requirements
● precision (double)
● magnetic field (slow varying)
● EM physics only (electron, photon)
● realistic geometry/data 

● Algorithms, core methods and implementation

● adaptive Runge-Kutta  (4th order)
● voxelized geometry/navigation
● electron and photon processes for HEP
● generic codes for future flexibility (CUDA, openCL, ...) 
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Hardware: Host and Device
● Host: AMD Opteron Process 6136

● CPU: 2.4 GHz, 4 Processors x 8 cores: 32 CPU cores

● Device: NVIDIA Tesla M2090
● GPU: 1.3 GHz,16 Multiprocessors x32 cores: 512 CUDA cores

● Performance measurements in execution time (T)
● number of threads per grid: 32 (blocks) x 128(threads)
● 100K tracks
● Tc = time with 1 CPU core
● Tk = time with 512 CUDA cores (kernel execution)
● Td = time for data transfers (memory allocations, H2D, D2H)

● Speedup GT = Tc/(Tk+Td) 
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Arithmetic Intensity
● (arithmetic instructions)/(off-chip memory operands)

● occupancy = (resident warps)/(maximum warps)
● latency = clock cycles for a warp to execute the next instruction

● Performance of numerical algorithms

● Adaptive step control is not enough to keep GPU busy
● kernel optimization may not be important if Td < Tk
● multiple stepping (physics)
● navigator (geometry)

Numerical Algorithm Tc (ms) Td (ms) Tk (ms) Tc/Tk GT

Classical Runga-Kutta 263 5.18 2.67 99 34

Runga-Kutta Felhberg 279 5.18 2.31 121 37

Nystrom Runga-Kutta 72 5.18 0.64 113 12
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Floating Point Consideration
● float vs. double

● Cost for double
● memory throughput (x2)
● registers spilling
● arithmetic instructions

● One step for 100K tracks

● Robustness is not negotiable 
(adequate precision)

GT RK4 RKF45 Nystrom

float 76 84 25

double 34 37 12
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EM Physics on GPU

● Most of secondaries are electrons or photons

● Implementing EM physics on the GPU
● increases computational intensity
● enable to make multiple stepping possible within GPU

● Mainly converted by D. Jang (CMU, now at Nokia)

 

● Challenge: handling secondaries and hits

Kernel (EM process) CPU(ms) GPU (ms) GT

Bremsstralung 343 8 42

Ionization 129 6 21

Multiple Scattering 40 5 8

Combined EM kernel 297 11 28
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Geometry
● Geometry is necessary for

● EMPhysics: material (mean free path)
● Transportation: navigator, intersection point

● Create a navigator per thread on GPU and reuse it
● re-initializing navigator per track with device geometry on the 

host and copy to the device is expensive 
● avoid large latency in global memory access 

● Performance depends on the complexity of geometry
SimpleCalo (nphi,nz) CPU (ms) GPU (ms) GT

Navigator::ComputeStep 309 10 31

Estimate Intersection Point 1485 32 46
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Random Number Generators
● Period, statistical properties, memory, efficiencies
● CUDA PRNG library (CURAND)

● XORWOW (xor-shift family)
● MRG32k3a (L’Ecuyer’s Multiple Recursive Generators)
● MTGP32 (Mersenne Twister, 32bit, period 2^11213)
● (SOBOL quasi-random generators)

● Performance (64 blocks x 256 threads)
● separate state setup kernels for maximum performance

CURAND PRNG Init States (ms) PRNG for 10K (ms)

XORWOW 4.09 7.55

MRG32k3a 6.16 22.17

MTG32 0.69 35.96
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Memory Bandwidth Implications

● Data transfer (PCIex2)
● use pinned memory
● batching data transfer 

● Global memory access
● coalesced access 
● minimize register spills 

(kernel decomposition)  

● Data structure
● texture for B-field map  
● AoS vs. SoA for tracks
● exploit data locality

Memory Bandwidth (GB/s)

Register 8,000 

Shared 1,600

Global 177

Mapped 8 
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EM Transportation
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Streams and Concurrent Kernels

● Multiple streams: task parallelism 
● multiple CUDA operations simultaneously 
● one (two) for data transfers, others for kernel executions

● Decompose algorithms with multiple kernels
● increase arithmetic intensity, but avoid kernel divergences
● reduce a performance cliff from register or local memory spills

● Develop concurrent computing models
● load balancing between CPU and GPU
● interface to a track dispatcher
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Performance Evaluation
● One step transportation for electron and photon tracks

● a simple calorimeter (phi-z segments)
● multiple streams and multiple kernels

● Transportation kernels
● random states (per thread) 
● (electron + photon) kernels with asynchronous data streams

● Performance

CPU (ms) GPU (ms) GT

Transportation (1 kernel) 1201 32 37

separated e/g (2 kernels) 1211 25 49
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Performance Comparison to Geant4

● CUDA host code runs 1.7 times faster than G4 equivalent

● Differences between A (Geant4 C++) and A’ (converted c)
● reduce number of temporary objects creation/destruction
● removal of generalization, including unrolling some functions 

calls, removing virtual
● reorganization of the data layout

CUDA c
host

device

CPU gcc

CPU nvcc

GPU nvcc

2066 ms

1211 ms

25 ms

A

A’

x1.7

Geant4
C++
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Cost Differential
● Hardware cost

● $(estimated NVIDA M2090) = ~$2500
● $(estimated AMD 4-CPUs)/(CPU cores) = ~$3200/32 = $100 

● Performance factors

● GT= 49

● power consumption: equivalent 

● Per unit of work, the GPU costs

● (2500/100)/GT/1.7 = 25/49/1.7 = 0.29

● Huge room to improve
● optimization (global memory access, re-use data)
● completed EM engines (arithmetic intensity, multiple stepping)
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Future Direction

● Decompose and optimize sub-components 
● base (data manipulation, random engines, utility functions) 
● EM Physics (complete electron, photon processes)
● geometry (explore locality and other options)
● transportation chains

● Extend the GPU prototype to large vector machines or 
hybrid systems 

● Connect to track dispatchers (ex: vector prototype) and 
demonstrate a definitive speedup
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