
GPUs in Geant4

Philippe Canal, Daniel Elvira, Soon Yung Jun,
Jim Kowalkowski, Marc Paterno

Fermilab

John Apostolakis
CERN

Annual Concurrency Meeting
February 4-6, 2013

Fermilab

Feb. 5, 2013 GPUs in Geant4 2

Detector Simulation on GPU?
● Geant4 HEP applications

● highly sequential/event-level
● complex/memory intensive

● Rules of GPU computing
● minimize data transfer
● keep arithmetic intensity
● re-use data

● Major challenges
● kernel divergence
● memory bandwidth
● work balance (CPU-GPU)

CUDA/OpenCL/OpenAcc

GPU

Feb. 5, 2013 GPUs in Geant4 3

Problem Statement

● A massively parallel particle transportation engine

● Requirements
● precision (double)
● magnetic field (slow varying)
● EM physics only (electron, photon)
● realistic geometry/data

● Algorithms, core methods and implementation

● adaptive Runge-Kutta (4th order)
● voxelized geometry/navigation
● electron and photon processes for HEP
● generic codes for future flexibility (CUDA, openCL, ...)

Feb. 5, 2013 GPUs in Geant4 4

Hardware: Host and Device
● Host: AMD Opteron Process 6136

● CPU: 2.4 GHz, 4 Processors x 8 cores: 32 CPU cores

● Device: NVIDIA Tesla M2090
● GPU: 1.3 GHz,16 Multiprocessors x32 cores: 512 CUDA cores

● Performance measurements in execution time (T)
● number of threads per grid: 32 (blocks) x 128(threads)
● 100K tracks
● Tc = time with 1 CPU core
● Tk = time with 512 CUDA cores (kernel execution)
● Td = time for data transfers (memory allocations, H2D, D2H)

● Speedup GT = Tc/(Tk+Td)

Feb. 5, 2013 GPUs in Geant4 5

Arithmetic Intensity
● (arithmetic instructions)/(off-chip memory operands)

● occupancy = (resident warps)/(maximum warps)
● latency = clock cycles for a warp to execute the next instruction

● Performance of numerical algorithms

● Adaptive step control is not enough to keep GPU busy
● kernel optimization may not be important if Td < Tk
● multiple stepping (physics)
● navigator (geometry)

Numerical Algorithm Tc (ms) Td (ms) Tk (ms) Tc/Tk GT

Classical Runga-Kutta 263 5.18 2.67 99 34

Runga-Kutta Felhberg 279 5.18 2.31 121 37

Nystrom Runga-Kutta 72 5.18 0.64 113 12

Feb. 5, 2013 GPUs in Geant4 6

Floating Point Consideration
● float vs. double

● Cost for double
● memory throughput (x2)
● registers spilling
● arithmetic instructions

● One step for 100K tracks

● Robustness is not negotiable
(adequate precision)

GT RK4 RKF45 Nystrom

float 76 84 25

double 34 37 12

Feb. 5, 2013 GPUs in Geant4 7

EM Physics on GPU

● Most of secondaries are electrons or photons

● Implementing EM physics on the GPU
● increases computational intensity
● enable to make multiple stepping possible within GPU

● Mainly converted by D. Jang (CMU, now at Nokia)

● Challenge: handling secondaries and hits

Kernel (EM process) CPU(ms) GPU (ms) GT

Bremsstralung 343 8 42

Ionization 129 6 21

Multiple Scattering 40 5 8

Combined EM kernel 297 11 28

Feb. 5, 2013 GPUs in Geant4 8

Geometry
● Geometry is necessary for

● EMPhysics: material (mean free path)
● Transportation: navigator, intersection point

● Create a navigator per thread on GPU and reuse it
● re-initializing navigator per track with device geometry on the

host and copy to the device is expensive
● avoid large latency in global memory access

● Performance depends on the complexity of geometry
SimpleCalo (nphi,nz) CPU (ms) GPU (ms) GT

Navigator::ComputeStep 309 10 31

Estimate Intersection Point 1485 32 46

Feb. 5, 2013 GPUs in Geant4 9

Random Number Generators
● Period, statistical properties, memory, efficiencies
● CUDA PRNG library (CURAND)

● XORWOW (xor-shift family)
● MRG32k3a (L’Ecuyer’s Multiple Recursive Generators)
● MTGP32 (Mersenne Twister, 32bit, period 2^11213)
● (SOBOL quasi-random generators)

● Performance (64 blocks x 256 threads)
● separate state setup kernels for maximum performance

CURAND PRNG Init States (ms) PRNG for 10K (ms)

XORWOW 4.09 7.55

MRG32k3a 6.16 22.17

MTG32 0.69 35.96

Feb. 5, 2013 GPUs in Geant4 10

Memory Bandwidth Implications

● Data transfer (PCIex2)
● use pinned memory
● batching data transfer

● Global memory access
● coalesced access
● minimize register spills

(kernel decomposition)

● Data structure
● texture for B-field map
● AoS vs. SoA for tracks
● exploit data locality

Memory Bandwidth (GB/s)

Register 8,000

Shared 1,600

Global 177

Mapped 8

Feb. 5, 2013 GPUs in Geant4 11

EM Transportation

Feb. 5, 2013 GPUs in Geant4 12

Streams and Concurrent Kernels

● Multiple streams: task parallelism
● multiple CUDA operations simultaneously
● one (two) for data transfers, others for kernel executions

● Decompose algorithms with multiple kernels
● increase arithmetic intensity, but avoid kernel divergences
● reduce a performance cliff from register or local memory spills

● Develop concurrent computing models
● load balancing between CPU and GPU
● interface to a track dispatcher

Feb. 5, 2013 GPUs in Geant4 13

Performance Evaluation
● One step transportation for electron and photon tracks

● a simple calorimeter (phi-z segments)
● multiple streams and multiple kernels

● Transportation kernels
● random states (per thread)
● (electron + photon) kernels with asynchronous data streams

● Performance

CPU (ms) GPU (ms) GT

Transportation (1 kernel) 1201 32 37

separated e/g (2 kernels) 1211 25 49

Feb. 5, 2013 GPUs in Geant4 14

Performance Comparison to Geant4

● CUDA host code runs 1.7 times faster than G4 equivalent

● Differences between A (Geant4 C++) and A’ (converted c)
● reduce number of temporary objects creation/destruction
● removal of generalization, including unrolling some functions

calls, removing virtual
● reorganization of the data layout

CUDA c
host

device

CPU gcc

CPU nvcc

GPU nvcc

2066 ms

1211 ms

25 ms

A

A’

x1.7

Geant4
C++

Feb. 5, 2013 GPUs in Geant4 15

Cost Differential
● Hardware cost

● $(estimated NVIDA M2090) = ~$2500
● $(estimated AMD 4-CPUs)/(CPU cores) = ~$3200/32 = $100

● Performance factors

● GT= 49

● power consumption: equivalent

● Per unit of work, the GPU costs

● (2500/100)/GT/1.7 = 25/49/1.7 = 0.29

● Huge room to improve
● optimization (global memory access, re-use data)
● completed EM engines (arithmetic intensity, multiple stepping)

Feb. 5, 2013 GPUs in Geant4 16

Future Direction

● Decompose and optimize sub-components
● base (data manipulation, random engines, utility functions)
● EM Physics (complete electron, photon processes)
● geometry (explore locality and other options)
● transportation chains

● Extend the GPU prototype to large vector machines or
hybrid systems

● Connect to track dispatchers (ex: vector prototype) and
demonstrate a definitive speedup

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

