

# DRD2: Liquid Detectors Collaboration and proposal

**Roxanne Guenette** 

DUNE Phase II meeting 18 September 2023

### The Science covered

#### **Neutrinos**

- Oscillation precision measurements (δ<sub>CP</sub>, mass ordering, θ<sub>23</sub> octant, sterile vs)
- Neutrino interactions
   (from CEvNS to DIS)
- Astro neutrinos

μBooNE

#### **Dark Matter**

• Direct detection (WIMPs, ...)





#### <u>Ονββ</u>

 Search for Majorana neutrinos







#### The Experiments (not exhaustive)

#### **Neutrinos**

Current generation:
MicroBooNE & SBN
LArIAT
protoDUNEs
CAPTAIN
COHERENT
Borexino
SK
Antares
KM3Net

Future generation:
DUNE modules 1 & 2
DUNE near detectors
DUNE modules 3 & 4
HK
Future neutrino telescopes

#### Dark Matter

Current generation:
LUX / LZ
XENON 10/100/1T/nT
Dark Side 50/20k
DEAP-3600
Panda-X

Future generation:
 ✓XLZD
 ✓GADMC/Argo
 ✓HeRALD
 ✓SBC

<u>Ονββ</u>

Current generation:
 ✓ EXO-200
 ✓ KamLand-Zen
 ✓ SNO+

Future generation:
nEXO
KL-Z+
Upgrades to SNO+

### The Physics Needs (high level overview)

#### **Neutrinos**

 Push Energy thresholds down to
 ~1MeV to enhance
 oscillation physics,
 supernovae vs study,
 to enable solar vs ...

# · Unambiguous readout

Scalability

#### **Dark Matter**

 Push Energy thresholds down to 1 meV/10 eV/1 keV to enable low mass DM/1 GeV DM/ WIMPs.

Reduce background rates

Scalability

<u>Ονββ</u>

 Improve Energy Resolution to sub-% FWHM

Reduce
 background rates

Scalability

### ECFA Roadmap (2021)



## ECFA Roadmap (2021)



### **DRD2** Collaboration



#### **Charge Readout:**

1.1 Jonathan Asaadi & Elena Gramellini

1.2 : Alexander Deisting & Kostas Mavrokoridis

#### Light readout:

2.1 Jocelyn Monroe

2.2 Marcin Kuzniak, Justo Martin-Albo, Clara Cuesta

2.3 Mathieu Bongrand & Tobias Lachenmaier

**Target Properties:** 

3.2: Davide Franco , Marie-Cecile Piro, Andrea Zani, Andrzej Szelc 3.1: Hans Steiger, Micheal Wurm, Stefan Schoppmann

Scaling-up Challenges:

4.1 Roberto Santorelli & Jim Dobson

4.2 Walter Bonivento & Minfan Yeh

4.3 Ines Gil-Botella , Jose Crespo , Giuliana Fiorillo

### DRD2 Proposal

- Year-long process to prepare the proposal
- Community workshops held on 20 April 2023
- Proposal draft circulated in June
- Submitted to ECFA beginning of August

| С        | ontents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                         |  |  |  |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| 1        | Introduction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                                                                                                                                                                                                       |  |  |  |
| 2        | Planning of Technology Areas         2.1       Technology Area 1: Charge Readout         2.1.1       Technology 1.1: Pixels and Charge + Light Readouts         2.1.2       Technology 1.2: Amplification structures, charge to light conversion, and granular light readout of dual-phase detectors         2.2       Technology Area 2: Light Readout         2.2.1       Technology 2.1: increased sensor quantum efficiency         2.2.2       Technology 2.2: Higher efficiency WLS/collection         2.3       Technology 3.1: Target properties         2.3.1       Technology 3.1: Target properties and isotope loading of Water and Liquid Scintillator         2.3.2       Technology 3.2: Noble Liquid target properties         2.4       Technology 4.1: radiopurity and background mitigation         2.4.1       Technology 4.2: Detector & target procurement/production & purification         2.4.3       Technology 4.3: Large-area readouts | $     \begin{array}{c}       1 \\       1 \\       4 \\       5 \\       5 \\       8 \\       9 \\       9 \\       9 \\       12 \\       13 \\       13 \\       16 \\       17 \\     \end{array} $ |  |  |  |
| 3        | Common tools test facilities                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 17                                                                                                                                                                                                      |  |  |  |
| 4        | Partnerships (industrial, other research areas, other applications)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 18                                                                                                                                                                                                      |  |  |  |
| <b>5</b> | 5 Networking and training                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                         |  |  |  |
| 6        | 6 Proposal for the collaboration structure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                         |  |  |  |
| 7        | Resources                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 19                                                                                                                                                                                                      |  |  |  |
| R        | eferences                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 22                                                                                                                                                                                                      |  |  |  |

### Deliverables (charge readout)

|                                                                                   |                                                                                                                                        | Timeline of milestones and major deliverables                                                                                                                                                                                                                                                                                        |                                                                                                                               |                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                           |
|-----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Deliverables                                                                      | Milestone                                                                                                                              | 2024                                                                                                                                                                                                                                                                                                                                 | 2025                                                                                                                          | 2026                                                                                                                                                                                                       | 2027-2030                                                                                                                                                                                                                                                                                                                      | >2030                                                                                                                                                                                                                                     |
| TA1: Charge Readout                                                               | -                                                                                                                                      | •                                                                                                                                                                                                                                                                                                                                    |                                                                                                                               |                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                           |
| TA1.1: Pixels and Charge + Light Readouts                                         |                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                      |                                                                                                                               |                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                           |
| TA1.1.D1: Design a fC charge sensing pixel<br>readout optimized                   | D1.1.M1.1 Lower pixel thresholds<br>to the limit of<br>CMOS capabilities.                                                              | $\mathcal{O}(1000 \mathrm{ENC})$                                                                                                                                                                                                                                                                                                     | $\mathcal{O}(500 \text{ ENC})$                                                                                                |                                                                                                                                                                                                            | $\mathcal{O}(< 200 \mathrm{ENC})$                                                                                                                                                                                                                                                                                              | $\mathcal{O}(< 100 \mathrm{ENC})$                                                                                                                                                                                                         |
| for low energy detection<br>and minimizing power consumption                      | TA1.1.M1.2 Lower                                                                                                                       | ${\sim}100\mu W/ch$                                                                                                                                                                                                                                                                                                                  | 50-100 µW/ch                                                                                                                  |                                                                                                                                                                                                            | $< 50\mu\mathrm{W/ch}$                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                           |
| TA11D2: Scaling pixel readout                                                     | power consumption                                                                                                                      |                                                                                                                                                                                                                                                                                                                                      |                                                                                                                               |                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                           |
| to O(100 million) channels                                                        |                                                                                                                                        | $O(10^5)$                                                                                                                                                                                                                                                                                                                            | $\mathcal{O}(10^6)$                                                                                                           |                                                                                                                                                                                                            | $\mathcal{O}(10^7)$                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                           |
| TA1.1.D3: Design of an architecture<br>capable of capturing<br>multimodal signals | TA1.1.M3.1 Maximize photocathode<br>coverage and QE<br>in an integrated<br>fC charge and VUV light<br>sensing scheme<br>for pixel TPCs | <ul> <li>Complete simulation<br/>of embedded<br/>photodetector technology</li> <li>Measurement low γ flux<br/>in ASe horizontal geometry         <ul> <li>ASe vertical<br/>geometry viability</li> <li>Integrated Pixel/SiPM<br/>demonstrations (SoLAr)</li> <li>Organics viability</li> <li>ZnO explorations</li> </ul> </li> </ul> | - Small scale prototyping<br>for embedded<br>photodetector technology<br>- Simulation package<br>for multiple modality pixels | <ul> <li>Joint readout<br/>scheme for<br/>ASe horizontal geo</li> <li>Measurement Low γ flux<br/>in ASe vertical geo</li> <li>Other material explorations<br/>(Perovskites, Nanoplatelets, etc)</li> </ul> | <ul> <li>Performance assessment<br/>for embedded</li> <li>photodetector technology</li> <li>Small scale prototyping</li> <li>ASe horizontal geo</li> <li>Joint readout scheme &amp;<br/>small scale prototyping<br/>for ASe vertical geo</li> <li>Measurement Low γ<br/>flux in perovskites<br/>&amp; nanoplatelets</li> </ul> | <ul> <li>Mid-scale prototype<br/>for pixel embedded<br/>photodetectors</li> <li>(data taking and validation)</li> <li>Mid-scale prototype<br/>for multiple modality</li> <li>(data taking and validation)</li> <li>Scalability</li> </ul> |
|                                                                                   | TA1.1.M3.2 Novel fast (O(GHz))<br>clock/timing<br>architectures<br>for charge & Q+L readout                                            | 50 MHz                                                                                                                                                                                                                                                                                                                               | 100 MHz                                                                                                                       | 500 MHz                                                                                                                                                                                                    | 1 GHz                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                           |
| TA1.2: Amplification structures, charge to Light conversion, and gran             | ular light readout of dual phase detectors                                                                                             |                                                                                                                                                                                                                                                                                                                                      | 1                                                                                                                             | 1                                                                                                                                                                                                          | 1                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                           |
| TA1.2.D1: Granular S2 light                                                       | TA1.2.M1.1: Camera-based particle<br>tracking                                                                                          | first testing of<br>photosensitive TPX4                                                                                                                                                                                                                                                                                              | testing TPX4 camera<br>on prototype TPC;<br>Design of VUV<br>optics                                                           | testing integrate VUV image intensifier<br>and TPX4 camera                                                                                                                                                 | test tracking, physics capability<br>long TPX4 camera TPC runs                                                                                                                                                                                                                                                                 | scalability<br>implementation R&D                                                                                                                                                                                                         |
|                                                                                   | TA1.2M1.2: SiPM-based particle<br>tracking                                                                                             |                                                                                                                                                                                                                                                                                                                                      | -                                                                                                                             |                                                                                                                                                                                                            | demonstrate mm tracking<br>resolution and sub-percent<br>energy resolution                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                           |
|                                                                                   | TA1.2.M1.3: Camera-based S1<br>detection                                                                                               |                                                                                                                                                                                                                                                                                                                                      |                                                                                                                               |                                                                                                                                                                                                            | demonstrate S1 detection<br>with TPX4cam using<br>WLS-coated GEMs or S2<br>induced by S1 via<br>photoelectric effect                                                                                                                                                                                                           |                                                                                                                                                                                                                                           |
| TA1.2.D2: Optimisation and characterisation of charge amplification structures    | TA1.2.M2.1: dual phase                                                                                                                 |                                                                                                                                                                                                                                                                                                                                      | demonstrate single electron<br>sensitivity using novel<br>amplification structures                                            | optimisation of large-area<br>cryogenic glass thick GEMs,<br>demonstrate ER/NR discrimination;<br>demonstrate feasibility of<br>new techniques to generate<br>intense proportional scintillation           |                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                           |
|                                                                                   | TA1.2.M2.2a: single phase LXe                                                                                                          |                                                                                                                                                                                                                                                                                                                                      |                                                                                                                               | demonstrate single electron<br>sensitivity using novel<br>electroluminescence structures                                                                                                                   | demonstrate ER/NR discrimination,<br>developments for m <sup>2</sup> -scale<br>testing device and<br>integration techniques                                                                                                                                                                                                    |                                                                                                                                                                                                                                           |
|                                                                                   | TA1.2.M2.2b: single-phase LAr                                                                                                          |                                                                                                                                                                                                                                                                                                                                      | demonstrate stable<br>charge amplification                                                                                    | demonstrate sub-keV<br>detection threshold                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                           |
|                                                                                   | TA1.2.M2.3: novel amplification strategies<br>for single and mixed-phase<br>detectors                                                  |                                                                                                                                                                                                                                                                                                                                      | report on the feasibility<br>of LAr/LXe 10 l scale detector<br>with bubble-assisted<br>amplification/electroluminescence      |                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                           |
| TA1.2.D3: Demonstration of scalability of D1 an D2                                | TA1.2.M3.1: LAr / dual phase Ar large<br>scale tests                                                                                   |                                                                                                                                                                                                                                                                                                                                      |                                                                                                                               | imaging large-area with TPX<br>camera readout in protoDUNE                                                                                                                                                 | Evaluate tracking and physics<br>capabilities in protoDUNE rune                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                           |
|                                                                                   | TA1.2.M3.2: Single phase LXe / dual phase Xe large scale tests                                                                         |                                                                                                                                                                                                                                                                                                                                      | m <sup>2</sup> -sized demonstrator of a<br>dual-phase LXe electroluminescence<br>stage                                        | m <sup>2</sup> -sized demonstrator of a<br>single-phase LXe electroluminescence<br>stage                                                                                                                   | demonstrate scalability to $m^2$ scale                                                                                                                                                                                                                                                                                         | experimental implementation                                                                                                                                                                                                               |

Table 1: Deliverables and milestones of TA1: Charge Readout.

### Deliverables (light readout)

|                                                                 |                                                                                                                                      | Timeline of milestones and major deliverables                                                                                                                                            |                                                                                                                                                                                     |                                                                                  |                                                                                                                          |  |
|-----------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|--|
| Deliverables                                                    | Milestone                                                                                                                            | 2024                                                                                                                                                                                     | 2025                                                                                                                                                                                | 2026                                                                             | <b>2027-2030</b> >2030                                                                                                   |  |
| TA2: Light Readout                                              | •                                                                                                                                    |                                                                                                                                                                                          |                                                                                                                                                                                     |                                                                                  | · · ·                                                                                                                    |  |
| TA2.1: Increased Sensor Quantum Effici                          | iency                                                                                                                                |                                                                                                                                                                                          |                                                                                                                                                                                     |                                                                                  |                                                                                                                          |  |
| TA2.1.D1: Sensor optimisation                                   | TA2.1.M1.1 design optimisation for<br>low-noise, high fill-factor                                                                    | digital SPAD<br>design                                                                                                                                                                   | digital SiPM<br>design                                                                                                                                                              | SIGHT and SiPMs<br>for full wavelength range<br>coverage development             | organic photosensors<br>prototypes available                                                                             |  |
|                                                                 | TA2.1.M1.2 purpose-optimised coatings<br>for LAr/LXe wavelengths                                                                     | reflectivity<br>reduction strategies<br>exploring graphene                                                                                                                               | narrowband coatings<br>optimised for VUV                                                                                                                                            | VUV characterisation<br>measurements of prototypes                               | novel coatings materials<br>development and<br>characterisation                                                          |  |
|                                                                 | TA2.1.M1.3 optimised surface passivation<br>for VUV                                                                                  |                                                                                                                                                                                          | apply BSI-CCD<br>passivation strategies                                                                                                                                             | device integration of samples                                                    | PDE characterisation<br>measurements                                                                                     |  |
|                                                                 | TA2.1.M2.1: demonstrated 2D/3D integration<br>processes                                                                              | for FSI-SPADs                                                                                                                                                                            | cryogenic PDE characterisation                                                                                                                                                      | for BSI-SPADS<br>achieving low noise                                             | optimisation for<br>ultra-low radioactivity                                                                              |  |
| TA2.1.D2: detector integration optimisation                     | TA2.1.M2.2: development of cryogenic SiPMs<br>with enhanced PDE, reduced noise and<br>connectivity for 3D integration                | Development of FSI SiPMs with<br>medium-to-fine pitch TSVs;<br>Start of development of BSI SiPM.<br>Study/improvement of correlated noise<br>in FSI/BSI SiPMs at cryogenic temperatures. | Optimize for cryogenic compatibility<br>of FSI SiPMs with TSVs;<br>Development of BSI SiPM.<br>Study/improvement of correlated noise in FSI/BSI<br>SiPMs at cryogenic temperatures. | Study/improvement of correlated noise in<br>BSI SiPMs at cryogenic temperatures. | addition of VUV surface passivation to BSI<br>and characterization                                                       |  |
|                                                                 | TA2.1.M2.3: development of cryogenic SPAD<br>and readout electronics technology<br>on a commercial CMOS foundry                      | Sensor design of a<br>prototype mini-SiPM pseudo-matrices<br>and front-end readout electronics<br>using LFoundry LF11is technology                                                       | Tapeout preparation of CMOS<br>test structures; design of<br>PCB carriers for characterisation                                                                                      | Characterisation activities                                                      | Design of a full-scale sensor<br>matrix and readout electronics tier;<br>hybrid 3D stacking of sensor<br>and electronics |  |
|                                                                 | TA2.1.M2.4: segmentation optimised for<br>measurement strategy                                                                       | PIONEER facility development                                                                                                                                                             | measurements in<br>LXe/LAr                                                                                                                                                          | characterise optical<br>segmentation impact<br>on energy resolution              | simulations benchmarking using LoLX;<br>comparing Optiks and Chroma performance;<br>run at high energies (70 MeV).       |  |
| TA2.1.D3: characterisation facilities for VUV                   | TA2.1.M3.1 PDE vs. $\lambda$ ,T<br>measurement capability                                                                            |                                                                                                                                                                                          | Liverpool & Napoli cryogenic PDE<br>measurement facilities construction<br>CIEMAT cryogenic<br>characterisation facility<br>development                                             | measurements at<br>access facilities<br>programme operational                    |                                                                                                                          |  |
|                                                                 | TA2.1.M3.2: sensor noise characterisation                                                                                            | Microscope for Injection<br>and Emission of Light<br>(MIEL) operation<br>at TRIUMF                                                                                                       | study of noise burst / rare events<br>(potentially attributed to package<br>and / cosmic rays)                                                                                      | RAL PPD SiPMs/fibres & Oxford & Zurich LAr/LXe<br>characterisation operational   | measurements at<br>access facilities<br>programme operational                                                            |  |
|                                                                 | TA2.1.M3.3: rare-event search<br>qualification                                                                                       | BUTTON underground<br>sensor test facility<br>in water/scintillation<br>construction                                                                                                     | Nikhef SiPM and<br>materials characterisation<br>facility development                                                                                                               | SoLAIRE underground<br>sensor test facility<br>m in LAr/LXe development          | underground measurements<br>access facility<br>programme operational                                                     |  |
| TA2.2: Wavelength shifters and increasi                         | ng light collection                                                                                                                  |                                                                                                                                                                                          |                                                                                                                                                                                     |                                                                                  |                                                                                                                          |  |
| TA2.2.D1: Better scalable wavelength<br>shifters and reflectors | TA2.2.M1.1: Optimal WLS for application in water;                                                                                    | Polymeric synthesis optimized;<br>Broader WLS survey completed (Ar and Xe)                                                                                                               | WLS characterization facility commissioned;<br>Determined solubility/long term<br>stability of TPB in LAr                                                                           | Polymeric production scaled-up;<br>Stable WLS solution for<br>LXe demonstrated;  | WLS and WLS-reflector production<br>and installation scaled up                                                           |  |
|                                                                 | TA2.2.M1.2: $4\pi$ evaporation source prototype commissioned                                                                         | Test $4\pi$ TPB coatings characterized;<br>Understood performance of large-scale WLS                                                                                                     | Final $4\pi$ evaporator design ready                                                                                                                                                | $4\pi$ evaporation crucible<br>constructed and tested                            | WLS and WLS-reflector production<br>and installation scaled up                                                           |  |
| TA2.2.D2: Optimized light collectors<br>and concentrators       | TA2.2.M2.1: Facility design and construction for light collector<br>optimization from VUV to visible light in cryogenic temperatures | Commissioning of the facility                                                                                                                                                            |                                                                                                                                                                                     |                                                                                  | Proposal for X-ARAPUCA optimization                                                                                      |  |
|                                                                 | 1A2.2.M2.2: Facility design and construction for light<br>collection through WLS fibers in liquid scintillators                      |                                                                                                                                                                                          | Commissioning of the facility                                                                                                                                                       |                                                                                  | Proposal for light collection optimization                                                                               |  |
|                                                                 | TA2.2.M2.3: Metalens and flat light concentrator + SiPM<br>for the VUV and development: proof of concept                             | Adhesion/durability of WLS coatings<br>in water; Directional WLS metasurface:<br>proof of concept                                                                                        | Development of flat light concentrators:<br>proof of concept                                                                                                                        | Large-scale light concentrator based on metasurfaces or flat light concentrators |                                                                                                                          |  |

Table 3: Deliverables and milestones of TA2: Light Readout.

#### Deliverables (Target properties)

| TA3.2: Target pro                                                     | perties of liquid nobles                                                                                                     |                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                         |                                                                 |
|-----------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|
| TA3.2.D1:<br>Understanding<br>Microphysics<br>of noble<br>liquid (NL) | TA3.2.M1.1: Measuring the NL response to<br>low energy recoils in the sub-keV                                                | <ol> <li>Monte-carlo campaign<br/>for the optimization<br/>of the system completed.</li> <li>New optimized TPC<br/>constructed and equipped<br/>with photosensors.</li> <li>Redesign and procure-<br/>ment of the new neutron<br/>spectrometer.</li> </ol>         | <ol> <li>TPC commissioned<br/>and characterized.</li> <li>Procurement of the<br/>neutron source/gun.</li> <li>Integration and<br/>mounting of the<br/>global system<br/>at LNS.</li> </ol>                                                                   | <ol> <li>Commissioning of the<br/>integrated system.</li> <li>Data taking for<br/>low-energy recoils.</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <ol> <li>Data taking for<br/>single-electron<br/>background.</li> <li>Ancillary calibra-<br/>tions, data analysis<br/>and finalization.</li> </ol>                                                                                                                                                                                      |                                                                 |
| response                                                              | TA3.2.M1.2: Establishing directionality<br>from bubble formation in superheated<br>noble mixture                             | 1. Commissioning of the<br>detector and R&D<br>technology for new<br>cameras                                                                                                                                                                                       | 1. R&D technology<br>for new cameras and<br>Data taking to establish<br>techniques to measure<br>directionality                                                                                                                                              | 1. Measurement with<br>the optimized detector<br>design.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                         |                                                                 |
|                                                                       | TA3.2.M1.3: Developing techniques<br>for low-energy calibrations                                                             | 1. Validation of<br>${}^{37}Ar$ source.<br>2. novel TOF<br>detectors for<br>O(10-100 keV) neutrons                                                                                                                                                                 | 1. Test new calibration<br>sources (photoneutron)<br>2. Test of new<br>neutron beams                                                                                                                                                                         | 1. Commissioning<br>of low energy<br>calibra-<br>tion detectors.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                         | 1. Commissioning for<br>actual dark matter<br>search detectors. |
|                                                                       | TA3.1.M1.4: Modelling microphysics                                                                                           | 1. Nucleation efficiency<br>revisited and<br>MD modeling.                                                                                                                                                                                                          | <ol> <li>Validation of<br/>the nucleation<br/>model with calibra-<br/>tion data.</li> <li>MD simulations<br/>with NEST.</li> </ol>                                                                                                                           | 1. Extension of<br>the NEST model<br>from low to high<br>energy regime.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                         |                                                                 |
| TA3.2.D2:<br>Characterizing<br>and Modelling NL                       | TA3.2.M2.1: Measuring NL Scintillation<br>pulse shape as a<br>function of dopants and<br>or contaminants                     |                                                                                                                                                                                                                                                                    | 1. Pulse Shape<br>characterization<br>of the scintil-<br>lation response from<br>the far to the near UV                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1. Pulse Shape<br>characterization<br>of the scintil-<br>lation response in<br>the near IR                                                                                                                                                                                                                                              |                                                                 |
| light emission<br>and transport                                       | TA3.2.M2.2: Characterizing Near IR<br>emitted from Xe-LAr.                                                                   | 1. Tests and construct<br>charge-only                                                                                                                                                                                                                              | 1. Charge and light<br>readout (IR+VUV)                                                                                                                                                                                                                      | 1. Test in large<br>scale TPC.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                         |                                                                 |
|                                                                       | TA3.2.M2.3: Precise measurement of<br>scattering and absorption<br>lengths as a function<br>of contaminant<br>concentrations | <ol> <li>Setup for Xe-doping<br/>assembled.</li> <li>Xe-loading established</li> <li>Measure group velocity<br/>in LXe using existing,<br/>commissioned DPXe<br/>setup and muon<br/>detectors.</li> <li>Study scattering<br/>and propagation<br/>in LXe</li> </ol> | <ol> <li>First measurements of Rayleigh scattering length (RSL) and refractive index in Xe-Ar mixture.</li> <li>Optical time domain reflectometry (OTDR) measurements with ps laser pulses to determine refractive index and RSL.</li> </ol>                 | 1. RSL and refractive<br>index measurements<br>as a function of<br>Xe-doping.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <ol> <li>Consolidating<br/>findings from<br/>previous measure-<br/>ments and R&amp;D<br/>studies. Refine<br/>measurement<br/>techniques for<br/>group velocity<br/>and Rayleigh<br/>Scattering length<br/>measurements.</li> <li>Contribute to<br/>advancements in<br/>particle detection<br/>at the Xenoscope<br/>facility.</li> </ol> |                                                                 |
|                                                                       | TA3.2.M2.4: Develop new strategies<br>for fast optical<br>simulations                                                        | 1. Establish mathe-<br>matical model to<br>minimize training of<br>numerical approxima-<br>ted simulation models.                                                                                                                                                  | 1. Identify and val-<br>date best performing<br>paradigm to use<br>GPUs for NL transport<br>simulation.                                                                                                                                                      | 1 Implement solutions<br>in experiment code<br>and standalone<br>software.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                         |                                                                 |
| TA3.2.D3:                                                             | TA3.2.M3.1: Characterize thermodynamics<br>of Xe-doped LAr                                                                   | 1. Phase diagram and<br>solubility measurement                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                         |                                                                 |
| Properties of Xe-Ar<br>mixture                                        | TA3.2.M3.2: Verify stability in time<br>and uniformity in volume.                                                            | 1. Stability test with<br>low concentrations<br>(jppm) of Xe                                                                                                                                                                                                       |                                                                                                                                                                                                                                                              | 1. Stability test with<br>high concentrations<br>(a few %-level) of Xe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                         |                                                                 |
|                                                                       | TA3.2.M3.3: Measuring Scintillation<br>and ionization of Xe-LAr as a<br>function of Xe concentration                         |                                                                                                                                                                                                                                                                    | <ol> <li>Characterization of<br/>electronic recoil<br/>scintillation and<br/>ionization in LAr<br/>doped with i1% Xe</li> <li>Characterize light<br/>response of different<br/>Xe doping levels in<br/>LAr using X-ARAPUCAs<br/>operating at CERN</li> </ol> | <ol> <li>Contracterization of<br/>nuclear recoil scintillation<br/>and ionization in LAr<br/>doped with ≤1% Xe.</li> <li>Bubble chamber Characte-<br/>rization of Xe-doped LAr<br/>concentration</li> <li>Pulse Shape characte-<br/>rization of the scintillation<br/>response from the Far to<br/>the near UV for controlled<br/>amounts of Xe<br/>doping up to 100 ppm</li> <li>Characterization of<br/>electronic recoil<br/>scintillation and ionization<br/>in LAr doped up to the<br/>maximum Xe solubility</li> <li>Characterize light response<br/>of different Xe doping levels<br/>in LAr using X-ARAPUCAs</li> </ol> | 1. Pulse Shape characte-<br>rization of the scintillation<br>response in near IR or<br>controlled amounts of Xe<br>doping up to 100 ppm                                                                                                                                                                                                 |                                                                 |

#### Deliverables (Scaling-up challenges)

|                                                                                       |                                                                                        | Timeline of milestones and major deliverables                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                               |                                                                                               |  |
|---------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|--|
| Deliverables                                                                          | Milestone                                                                              | 2024                                                                                                                                                                                                                                                                                                                                                                                                                              | 2025                                                                                                                                                                                                                                                                                                                                                | 2026                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2027-2030                                                                                                                                                     | >2030                                                                                         |  |
| TA4: Scaling-up Challenges                                                            |                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                               |                                                                                               |  |
| TA4.1: Radiopurity and background mitigati                                            |                                                                                        | Design and material calestion                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Throughput coale up for all techniques                                                                                                                        |                                                                                               |  |
| TA4.1.D1: Radioassay techniques at required<br>sensitivity for next generation of     | TA4.1.M1.1 Achieve <5 μBq sensitivity for<br>warm/cold Rn emanation                    | for warm/cold Rn emanation at<br><5 µBq sensitivity;                                                                                                                                                                                                                                                                                                                                                                              | Portable gas Rn monitor<br>constructed and tested;                                                                                                                                                                                                                                                                                                  | Rn emanation warm/cold<br>sensitivity demonstrated at <5 µBq;                                                                                                                                                                                                                                                                                                                                                                                                                         | Characterisation of stock materials and<br>barrier methods for next-generation experiments.                                                                   |                                                                                               |  |
| rare-event search experiments                                                         | TA4.1.M1.2 Achieve <20 ppq U/Th sensitivity<br>with ICP-MS and HPGe to <2 µBq/kg       | protocols for key materials<br>at <20 ppq U/Th                                                                                                                                                                                                                                                                                                                                                                                    | HPGe detector built<br>and characterised;                                                                                                                                                                                                                                                                                                           | Demonstration rapid pre-screening<br>using laser ablation<br>ICP-MS to 10 ppt U/Th.                                                                                                                                                                                                                                                                                                                                                                                                   | Characterisation of stock materials and<br>barrier methods for next-generation experiments.                                                                   |                                                                                               |  |
| TA4.1.D2: Mitigation through<br>material selection/treatment and<br>clean manufacture | TA4.1.M2.1 Reach few ng/cm <sup>2</sup> surface<br>cleanliness levels                  | Demonstration of ML-enabled<br>optical and flurescence<br>surface dust contamination to few<br>materials and methods<br>(electroplating, conventional);<br>Design and material selection for<br>surface<br>alpha-screening system (with<br>industrial<br>partners) with 10 μBq/m <sup>2</sup><br>sensitivity;<br>Synthesis of new microporous<br>adsorbents for Rn capture<br>in gas phase (Ar, Xe, N2).                          | Demonstration of dust removal<br>using atmospheric plasma surface<br>treatment;<br>New generation of microporous<br>radon adsorbents characterised in<br>Ar,<br>Xe gas a function to T, P.                                                                                                                                                          | Protocols for dust removal surface<br>treatments<br>(chemical/electrochemical)<br>demonstrated<br>(few ng/cm <sup>2</sup> ); Facility for tests<br>of surface contamination of large<br>electrodes O(m <sup>2</sup> );<br>Barrier surface treatment of large<br>scale detector components<br>operational;<br>Surface apha-screening system<br>operational<br>with 100 µBq/m <sup>2</sup> sensitivity;<br>Vacuum Swing Absorption<br>prototype developed<br>using optimised absorbent. | Demonstration of dust<br>removal using vacuum<br>plasma surface treatment.                                                                                    |                                                                                               |  |
| TA4.1.D3: Development of novel<br>materials<br>for background suppression             | Gd-PMMA at scale                                                                       | Development of low-background<br>polymerization processes for<br>passive shields and light guides;<br>Design optimisation for<br>Gd-PMMA system (maximum<br>Gd-fraction, veto thickness).                                                                                                                                                                                                                                         | Scale-up passive shield<br>production; Evaluation of<br>microporous adsorbent materials<br>for Rn capture; Materials<br>screening/selection for<br>high-radiopurity Gd-PMMA<br>active shielding.                                                                                                                                                    | Design and prototype Rn removal<br>system based on microporous<br>absorbants; Gd-PMMA scale-up<br>via industrial transfer.                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                               |                                                                                               |  |
| TA4.1.D4: Tools for the evaluation of backgrounds                                     | 1A4.1.M4.1 Public release of simulation<br>and accounting tools;                       | Implementation of generic highly<br>shielded detector in GEANT4;<br>Development of GPU-accelerated<br>statistical inference tools;<br>Improvement in accuracy of<br>neutron yield calculations with<br>uncertainties of 10% for most<br>materials; Comparison between<br>codes, models and datasets for<br>cosmogenic and beam activation<br>products; Development of material<br>background accounting tool and<br>data formats. | Development of techniques for<br>high-stats simulations of highly<br>shielded detectors (event biasing,<br>bootstrapping, GPU/TPU<br>accelerated); Release updated<br>neutron yield library (SOURCE4)<br>and paper; Toolkit for accurate<br>simulation of cosmogenic<br>production and activation of<br>detector components and target<br>materials | Improved (α-n) production<br>cross-section measurements for<br>key materials (e.g., argon); Report<br>on design studies optimising active<br>veto strategies vs fiducial trade off<br>for 0vBB, DM.                                                                                                                                                                                                                                                                                   |                                                                                                                                                               |                                                                                               |  |
| TA4 2: Detector & Target Procurement/Pro                                              | duction and Purification                                                               | data iorinats.                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                               |                                                                                               |  |
| TA4.2.D1: Scale-up mass production                                                    | TA4.2.M1.1: massive purification/production<br>facilities for (Md & Wb) LS/Wc          | tonne-scale facility to exercise scale-up<br>technology and requirement for metal-doped<br>& water-based LS/Wc manufacture                                                                                                                                                                                                                                                                                                        | facility capable of producing<br>metal-doped & water-based LS/Wc to<br>support 10s tons of prototype and deployment<br>(i.e. 30TBNL, Eos, ANNIE, LiquidO, BUTTON100X)                                                                                                                                                                               | Facility capable of >100-ton scale<br>metal-doped & water-based LS/Wc manufacture<br>for experimental deployment                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                               |                                                                                               |  |
|                                                                                       | TA4.2.M1.2: Massive (ktonne)<br>xenon production                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                   | R&D to extract xenon from air,<br>Construct pilot plant and production plant.                                                                                                                                                                                                                                                                       | Complete R&D for pilot plant                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Construct pilot plant                                                                                                                                         |                                                                                               |  |
|                                                                                       | and sampling                                                                           | Setup and test a detector for 39Ar                                                                                                                                                                                                                                                                                                                                                                                                | Run the detector for 39Ar                                                                                                                                                                                                                                                                                                                           | Setup a detector for 42Ar                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Run a detector for 42Ar                                                                                                                                       |                                                                                               |  |
|                                                                                       | TA4.2.M1.4: Purification from contaminants                                             | Urania and Aria construction                                                                                                                                                                                                                                                                                                                                                                                                      | Urania and Aria run                                                                                                                                                                                                                                                                                                                                 | Scale up production for Argo,<br>DUNE MoO                                                                                                                                                                                                                                                                                                                                                                                                                                             | Find new UAr sources, scale up plants                                                                                                                         |                                                                                               |  |
| TA4.2.D2: Purification technologies                                                   | TA4.2.M2.1: In-situ purification and production scheme<br>for (Md & Wb) LS/Wc detector | QA/QC procedures to guide manufacture process                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                     | Demonstrate the feasibility of nanofiltration<br>for WbLS detector and inline<br>purification technology for metal-doped<br>LS/Wc at 108 of tons                                                                                                                                                                                                                                                                                                                                      | A scale-up nanofiltration system<br>for WbLS and an inline purification<br>system for LS detectors at<br>1008-1000s of tons                                   | Tech-transfer and communicate<br>with the commercial vendors<br>to improve starting materials |  |
|                                                                                       | 1A4.2.M2.2: xenon purincation                                                          | oorr and Kn suppression by online distillation                                                                                                                                                                                                                                                                                                                                                                                    | Construction and installation of laser-based                                                                                                                                                                                                                                                                                                        | Ar and An removal technology for DARWIN/XLZD                                                                                                                                                                                                                                                                                                                                                                                                                                          | Online Kr and Kn diagnostics for DARWIN/XLZD                                                                                                                  |                                                                                               |  |
|                                                                                       | TA4.2.M2.3: Ar extreme purification                                                    | Measure electron lifetime/liquid argon<br>purity in-situ using a system of 1<br>aser beams; Residual isolated electron study                                                                                                                                                                                                                                                                                                      | programmable, calibration of naseroaced,<br>ProtoDUNE detectors at CERN<br>Understand sources of single electrons<br>developing and verification of countermeasures;                                                                                                                                                                                | Characterization of ionization charge dependence<br>with track length, and stability                                                                                                                                                                                                                                                                                                                                                                                                  | Measurement of electron lifetime in<br>ProtoDUNE-HD or VD with laser;<br>Tuning of simulation model for ionisation<br>charge with real calibration data in PD |                                                                                               |  |
| 1A4.3: Large-area Readouts                                                            |                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                               |                                                                                               |  |
| TA4.3.D1: Development of mid-scale facilities<br>for large-area readout assembly and  | TA4.3.M1.1 Operation of the photodetector facility                                     | Design of the photodetector facility                                                                                                                                                                                                                                                                                                                                                                                              | photodetector facility<br>Commissioning and TPC construction                                                                                                                                                                                                                                                                                        | First operation of the photodetector facility                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                               |                                                                                               |  |
| characterization at cryogenic temperature                                             | TA4.3.M1.2 Operation of the TPC-testing facility TA4.2.M2.1 BMT readout demonstration  | Upgrade of the TPC-testing facility<br>Test of multi-PMTs readout at                                                                                                                                                                                                                                                                                                                                                              | for the TPC facility                                                                                                                                                                                                                                                                                                                                | First operation of the TPC-testing facility                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                               |                                                                                               |  |
| TA4.3.D2: Large-scale digitization technologies                                       | TA4.9.N2.1 F M1 readout demonstration                                                  | WC Test experiment at CERN                                                                                                                                                                                                                                                                                                                                                                                                        | Design of cold ADC and FPGA boards                                                                                                                                                                                                                                                                                                                  | Production of prototypes of cold ADC                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Testing of cold electronics for                                                                                                                               |                                                                                               |  |
|                                                                                       | TA4.3.M2.2 StPM readout demonstration                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                   | for scintillation light signal processing                                                                                                                                                                                                                                                                                                           | and FPGA boards for scintillation<br>light signal processing<br>Demonstration of large scale photodetection                                                                                                                                                                                                                                                                                                                                                                           | scintillation light signal processing                                                                                                                         |                                                                                               |  |
| TA4.3.D3: Large-scale joint integration tests                                         | TA4.3.M3.1 Demonstration of large scale photodetection<br>in a field cage              |                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                     | in a field cage at ProtoDUNE with<br>charged particle beams                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                               |                                                                                               |  |
|                                                                                       | TA4.3.M3.2 First O(10 million) pixel readout                                           | Operation of 102 6 v 6 mm <sup>2</sup> MDDCa in Var                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Scaling pixel readout<br>to O(10 million) channels                                                                                                            |                                                                                               |  |
| 1                                                                                     | 174.5.915.5 Operation of large ini-factor UV sensors.                                  | Operation of 192 0 × 0 mm <sup>-</sup> MFFUS III Aenoscope                                                                                                                                                                                                                                                                                                                                                                        | 1                                                                                                                                                                                                                                                                                                                                                   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1                                                                                                                                                             |                                                                                               |  |

- Proposals are currently under review by ECFA (timescale December 2023)
- Approved collaborations should be formed early 2024
- There will always be possibilities to join these collaborations
- In discussion with the US-side (RDCs) to ensure efficient collaboration and procedures
- If you have not done yet, consider joining DRD2!
  - "Register" to the indico: https://indico.cern.ch/event/1214404