

KALMAN FILTER PERFORMANCE STUDY ND-GAR MEETING 19TH SEPTEMBER 2023

Author: Federico Battist

ALICE BASED KALMAN FILTER FOR ND-GAR: PERFORMANCE STUDY

- In today's presentation:
 - Study on sample of primary particles (μ^-, p, π^+) produced in $\nu_{\mu}CC$ interactions inside the TPC fiducial volume:
 - Discussion of bug fixes for new ALICE-based Kalman Filter
 - Comparison of momentum reconstruction performance of new ALICE-based Kalman Filter with current GArSoft reconstruction
- Previous presentations include:
 - 1. Dune Collaboration meeting 26th January 2022: https://indico.fnal.gov/event/50215/contributions/232480/
 - 2. ND-GAr weekly meeting 15th March 2022: https://indico.fnal.gov/event/53600/contributions/236685/
 - 3. DUNE Collaboration meeting 18th May 2022: <u>https://indico.fnal.gov/event/50217/contributions/241519/</u>
 - 4. ND-GAr weekly meeting 9th August 2022: <u>https://indico.fnal.gov/event/55842/</u>
 - 5. ND-GAr weekly meeting 25th October 2022: <u>https://indico.fnal.gov/event/56687/</u>
 - 6. ND-GAr weekly meeting 28th February 2023: <u>https://indico.fnal.gov/event/58350/</u>
 - 7. Dune Collaboration meeting 25th May 2023: <u>https://indico.fnal.gov/event/57487/contributions/267579/</u>

SAMPLE 2: MUONS FROM $\nu_{\mu}CC$ IN TPC FIDUCIAL

- SAMPLE : 4.35 × 10⁴ neutrino interactions in active TPC volume produced using GENIE module in GArSoft v2_18_00 with standard flux
- Selected only $\nu_{\mu}CC$ interactions with reconstructed vertex in TPC fiducial volume as defined in ND-CDR :

 $\begin{aligned} R_{fid} &\leq (R_{TPC} - 50cm); \\ \left| z_{fid} \right| &\leq (\left| z_{TPC} \right| - 30cm); \end{aligned}$

Considered primary particles from interactions: μ^- , p, π^+ (previous study only included muons)

NEW RESULTS AFTER BUG FIXES

Profile plots for resolution : (σ) from momentum residual Gauss fit in each NPoints slice

NPoints1D distribution (NB: in old study garsoft tracks associated with wrong number of points)

- Momentum resolution should go as $\propto 1/\sqrt{NPoints}$ (<u>https://indico.fnal.gov/event/58350/</u>)
- Old study seemed to indicate that the new KF out-performed the current garsoft one only for long tracks: new study shows new KF outperforms old one over the whole spectrum.
- Two major bugs found:
 - In track point ordering wrong cutoff parameter was used, reducing length of tracks (fSortDistCut = 10cm instead of 20 cm)
 - Cross Length between points was calculated incorrectly for energy loss corrections

MUONS MOMENTUM RESOLUTION : GARSOFT VS NEW KF VS CDR

- Momentum fractional residuals for muon sample define reconstruction and resolution biases
- $(p_{reco}-p_{MC})/p_{MC}$ distributions are fitted with a double Gauss fit, like in CDR, defining a core and tails sample:
 - GArSoft: $(A_{core}, \mu_{core}, \sigma_{core}) = (56, 0.3\%, 3.2\%)$ $(A_{tails}, \mu_{tails}, \sigma_{tails}) = (25, 0.6\%, 13\%)$
 - New KF: $(A_{core}, \mu_{core}, \sigma_{core}) = (57, 0.04\%, 2.6\%)$ $(A_{tails}, \mu_{tails}, \sigma_{tails}) = (24, 0.8\%, 11\%)$
 - CDR: $(A_{core}, \mu_{core}, \sigma_{core}) = (100, -0.4\%, 3\%)$ $(A_{tails}, \mu_{tails}, \sigma_{tails}) = (49, -1.4\%, 14\%)$
- New KF improves biases and resolutions overall for the muon sample

MUONS MOMENTUM RESOLUTION : GARSOFT VS NEW KF VS CDR

PIONS MOMENTUM RESOLUTION : GARSOFT VS NEW KF VS CDR

• $(p_{reco}-p_{MC})/p_{MC}$ distributions are fitted with a double Gauss fit, like in CDR, defining a core and tails sample:

- GArSoft: $(A_{core}, \mu_{core}, \sigma_{core}) = (30, 0.7\%, 3.2\%)$ $(A_{tails}, \mu_{tails}, \sigma_{tails}) = (17, 6\%, 12\%)$
- New KF: $(A_{core}, \mu_{core}, \sigma_{core}) = (31, -0.04\%, 2.7\%)$ $(A_{tails}, \mu_{tails}, \sigma_{tails}) = (15, 3\%, 11\%)$
- New KF improves biases and resolutions overall for the pion sample very similarly to muon sample (similar dEdx and mass)
- NOTE1: No CDR Results available: no direct comparison possible
- NOTE2: Tracks with less than 50 points are removed as for the muons

PROTONS MOMENTUM RESOLUTION : GARSOFT VS NEW KF

• $(p_{reco}-p_{MC})/p_{MC}$ distributions are fitted with a double Gauss fit, like in CDR, defining a core and tails sample:

- GArSoft: $(A_{core}, \mu_{core}, \sigma_{core}) = (53, 2\%, 4.6\%)$ $(A_{tails}, \mu_{tails}, \sigma_{tails}) = (88, 12\%, 19\%)$
- New KF: $(A_{core}, \mu_{core}, \sigma_{core}) = (89, -0.4\%, 4.5\%)$ $(A_{tails}, \mu_{tails}, \sigma_{tails}) = (49, -3\%, 19\%)$
- New KF majorly improves biases and resolutions for the proton sample (similar dEdx and mass)
- NOTE1: No CDR Results available: no direct comparison possible
- NOTE2: Tracks with less than 50 points are removed as for the muons

RESOLUTION DEPENDENCIES

• Analytical formulas derived directly from PDG chapter 34 on detectors give realistic expectations for the q/p_T resolution dependency: <u>https://pdg.lbl.gov/2019/reviews/rpp2019-rev-particle-detectors-accel.pdf</u>

POINT RESOLUTION

$$\sigma_{N} \left(\frac{q}{p}_{T} \right) = \frac{q \sigma_{r}}{0.3BL_{arm}} \sqrt{\frac{720}{N}}$$

MULTIPLE SCATTERING

$$\sigma_{MS}\left(\frac{q}{p_{T}}\right) = \left\langle\frac{1}{\beta p_{T}}\right\rangle \frac{q \times 0.016 \times B \times 0.3}{L} \sqrt{\frac{L}{X_{0}}}$$

$$\sigma_{ana} \left(\frac{q}{p_T} \right) = \sqrt{\sigma_N^2 + \sigma_{MS}^2}$$

- σ_r = radial resolution
- B = magnetic field
- N = number of points measured
 - L_{arm}= Lever arm on XY plane
- L⁼Length of the track on XY plane
- X₀=Radiation length in cm
- β = velocity
- **NOTE:** $<1/\beta p_T > =$ value of $1/(\beta p_T)$ averaged along the trajectory to take into account energy loss

NB: q/p_T scaling for high density materials, such as ND-GAr's gas mixture, should be dominates by the σ_{MS} component

MOMENTUM RESOLUTION AND BIAS VS P: MUONS μ^-

- Momentum resolution should be mostly momentum independent in this range and at these densities. This is largely true for the new KF but not in garsoft
- Note that the pT should be averaged through the whole track, which wasn't done here.
- New KF improves resolution over the whole spectrum and keeps bias mostly the same

MOMENTUM RESOLUTION AND BIAS VS LARM: MUONS μ^-

Profile plots for resolution and bias : (σ, μ) from momentum residual Gauss fit in each p slice

- Lever Arm: distance in transverse (yz) plane between first and last point in the track
- Momentum resolution in the range $p \in [0,6]$ GeV/*c* should be multiple scattering dominated and go as $\propto 1/\sqrt{LArm}$ (dependencies on Npoints and Length are similar; see back-up)
- New KF improves resolution over the whole spectrum and keeps bias mostly the same

MOMENTUM RESOLUTION AND BIAS VS P: PIONS π^+

- Momentum resolution should be mostly momentum independent in this range and at these densities.
- Primary pions are on average much lower in momentum than muons
- NB: at lower momenta, for higher mass particles the tracks will tend to be shorter and the resolution will degrade
- NB: pT should be averaged through the whole track, which wasn't done here.
- New KF improves resolution over the whole spectrum as well as the bias

MOMENTUM RESOLUTION AND BIAS VS LARM: PIONS π^+

- Lever Arm: distance in transverse (yz) plane between first and last point in the track
- Momentum resolution in the range $p \in [0,6]$ GeV/*c* should be multiple scattering dominated and go as $\propto 1/\sqrt{LArm}$
- New KF improves resolution over the whole spectrum as well as the bias: as the mass of the pions is higher than the one of the muons, the dEdx and MS components of the new KF start having a bigger effect

MOMENTUM RESOLUTION AND BIAS VS P: PROTONS p^+

- Momentum resolution should be mostly momentum independent in this range and at these densities.
- Primary protons are on average much lower in momentum than muons and much more similar to pions
- NB: at lower momenta, for higher mass particles the tracks will tend to be shorter and the resolution will degrade
- NB: pT should be averaged through the whole track, which wasn't done here.
- New KF improves resolution over the whole spectrum and especially the bias

MOMENTUM RESOLUTION AND BIAS VS LARM: PROTONS p^+

- Lever Arm: distance in transverse (yz) plane between first and last point in the track
- Momentum resolution in the range $p \in [0,6]$ GeV/c should be multiple scattering dominated and go as $\propto 1/\sqrt{LArm}$
- New KF improves resolution over the whole spectrum as well as the bias: as the mass of the protons is higher than the one of the muons, the dEdx and MS components of the new KF start having a bigger effect

SUMMARY AND CONCLUSIONS

- New ALICE-BASED Kalman Filter was tested and compared to the current GArSoft Reconstruction over a sample of primary particles from $v_{\mu}CC$ interactions with MC vertex in TPC fiducial volume:
 - Selected from a sample of 4.35×10^4 neutrino interactions in active TPC volume;
 - Produced using GENIE module in GArSoft v2_18_00 with standard flux;
 - Primary protons, pions and muons were considered
- Main Takeaways:
 - 1. After bug fixes, new KF shown to provide significant performance benefits for all analyzed particle types from the core sample of $v_{\mu}CC$ interactions
 - 2. Proton reconstruction is especially biased at the current state and the new KF can improve this
- Next steps:
 - 1. Finish improving pull tests so that they are as expected for all particle types (not discussed in this presentation)
 - 2. Explore benefits of the improved performance (e.g. TKI hydrogen study <u>https://indico.fnal.gov/event/59667/</u>)
 - 3. Implement in GArSoft

THANK YOU

......

1

ROBERT RATHBUN WILSON

FEDERICO BATTISTI

BACK-UP

MOMENTUM RESOLUTION AND BIAS VS LENGTH: MUONS μ^-

Profile plots for resolution and bias : (σ, μ) from momentum residual Gauss fit in each p slice

- Momentum resolution in the range $p \in [0,6]$ GeV/c should be multiple scattering dominated and go as $\propto 1/\sqrt{Length}$
- New KF improves resolution over the whole spectrum and keeps bias mostly the same

MOMENTUM RESOLUTION AND BIAS VS NPOINTS: MUONS μ^-

Profile plots for resolution and bias : (σ, μ) from momentum residual Gauss fit in each p slice

- Momentum resolution in the range $p \in [0,6]$ GeV/c should be multiple scattering dominated and go as $\propto 1/\sqrt{NPoints}$
- New KF improves resolution over the whole spectrum and keeps bias mostly the same

MOMENTUM RESOLUTION AND BIAS VS LENGTH: PIONS π^+

Profile plots for resolution and bias : (σ, μ) from momentum residual Gauss fit in each p slice

- Momentum resolution in the range $p \in [0,6]$ GeV/c should be multiple scattering dominated and go as $\propto 1/\sqrt{Length}$
- New KF improves resolution over the whole spectrum as well as the bias: as the mass of the pions is higher than the one of the muons, the dEdx and MS components of the new KF start having a bigger effect

MOMENTUM RESOLUTION AND BIAS VS NPOINTS: PIONS π^+

- Momentum resolution in the range $p \in [0,6]$ GeV/*c* should be multiple scattering dominated and go as $\propto 1/\sqrt{NPoints}$
- New KF improves resolution over the whole spectrum as well as the bias

MOMENTUM RESOLUTION AND BIAS VS LENGTH: PROTONS p^+

Profile plots for resolution and bias : (σ, μ) from momentum residual Gauss fit in each p slice

- Momentum resolution in the range $p \in [0,6]$ GeV/c should be multiple scattering dominated and go as $\propto 1/\sqrt{Length}$
- New KF improves resolution over the whole spectrum as well as the bias: as the mass of the pions is higher than the one of the muons, the dEdx and MS components of the new KF start having a bigger effect

MOMENTUM RESOLUTION AND BIAS VS NPOINTS: PROTONS $|p^+|$

- Momentum resolution in the range $p \in [0,6]$ GeV/*c* should be multiple scattering dominated and go • as $\propto 1/\sqrt{NPoints}$
- New KF improves resolution over the whole spectrum as well as the bias

RECONSTRUCTION

KALMAN FILTER BASICS

- Kalman filter: iterative Bayesian algorithm which mediates between system knowledge and measurement. Each iteration divided in three steps:
 - 1. Make A Priori prediction of the state of the system using evolution model for the particle's trajectory
 - 2. Calculate **Residual:** distance between measurement and prediction
 - 3. Mediate between the a priori prediction and the measurement calculating Kalman Gain and produce A Posteriori estimate

Note: See back-up for further reading

KALMAN FILTER BASICS

FEDERICO
BATTISTI27

KALMAN FILTER MODEL AND APPLICATION

- Use parametrization used in ALICE: state vector updated by the Kalman filter is $s = (y, x, sin\phi, tan\lambda, \frac{q}{p_T})$
- ALICE uses no approximations in the propagation, unlike current ND-GAr model which uses small angle approximation (for full description check back-up and first ND-GAr-Lite presentation <u>https://indico.fnal.gov/event/50215/contributions/2</u> 32480/)

28

KALMAN FILTER MODEL AND APPLICATION

- Use parametrization used in ALICE: state vector updated by the Kalman filter is $s = (y, x, sin\phi, tan\lambda, \frac{q}{p_T})$
- ALICE uses no approximations in the propagation, unlike current ND-GAr model which uses small angle approximation (for full description check back-up and first ND-GAr-Lite presentation <u>https://indico.fnal.gov/event/50215/contributions/2</u> 32480/)
- Kalman filter propagated radially: before each propagation, the coordinate system is rotated by an angle $\alpha = \tan(y/z)$, so that the track point "sits" on the local *z* axis (i.e. *z* coordinate becomes the radius from center of the detector)

KALMAN FILTER MODEL AND APPLICATION

- Local $sin\phi$ defines two yz semi-planes with "mirrored representations": the line separating the two is the one connecting the center of the detector and the center of curvature of the track
- As the track approaches one of the two semi-planes, $sin\phi$ reaches a point where it cannot be propagated further: $sin\phi \in [-1,1]$
- Once the limit is reached, the state-vector and Covariance associated with the last reconstructed track point are "mirrored":

$s_{k+1}^- = Rs_k^+$		$P_{k+1}^- = R P_k^+ R^T$			
	/1	0	0	0	0 \
	0	1	0	0	0
with $R =$	0	0	-1	0	0
	0	0	0	-1	0
	$\setminus 0$	0	0	0	-1/

• Finally, the local x coordinate is propagated by calculating the arch between the two mirrored points:

$$x_{k+1}^{-} = x_k^{+} + \operatorname{arch} * \tan \lambda$$

ENERGY LOSS CORRECTION

Bethe-Bloch (PDG) https://pdg.lbl.gov/2005 /reviews/passagerpp.pdf

$$\frac{1}{\rho}\frac{dE}{dx} = K \times \frac{Z}{A} \times \frac{z^2}{\beta^2} \left[\frac{1}{2} ln \left(\frac{2m_e \gamma^2 \beta^2 T_{max}}{I^2} \right) - \beta^2 - \frac{\delta}{2} \right] \quad [\text{GeV}/(\text{g/cm}^2)]$$

- Energy loss correction applied to helix fit:
 - 1. Get dE/dx with Bethe-Bloch and evaluate momentum loss over trajectory in small "momentum-loss" steps
 - 2. Calculate multiplicative factor to update q/p_T :

$$\frac{q}{p_T} *= cP4 = \left(1 + \frac{\Delta E}{p_{mean}^2} (\Delta E + 2 \times E_{in})\right)$$

- 2. Add factor to diagonal element of 5x5 Covariance Matrix *P* correspondent to q/p_T (found through error propagation): $P[4][4] + = \left(\frac{\sigma_E}{p_{mean}^2} \times \frac{q}{p_T}\right)^2$
- Note 1: These formulas are the same as the ones used by Geant4
- Note 2: Applied to both Kalman Filter "step-by-step" and Seeding "globally"

MS CORRECTION

Molière Formula (PDG) https://pdg.lbl.gov/2005 /reviews/passagerpp.pdf

$$\theta_0 = \frac{13.6MeV}{\beta p} z \sqrt{x/X_0} [1 + 0.038 \ln(x/X_0)]$$

- Multiple Scattering correction applied to Helix fit:
 - 1. Calculate width of the angular gaussian distribution produced by MS: θ_0 from Molière formula
 - 2. Propagate the error to the relevant Helix parameters, obtaining their respective σ 's ($\sigma_{sin\phi}, \sigma_{tan\lambda}, \sigma_{q/p_T}$)
 - 3. Update covariance matrix diagonal elements:

 $\begin{cases} P[2][2] += \sigma_{sin\phi}^{2} \\ P[3][3] += \sigma_{tan \lambda}^{2} \\ P[4][4] += \sigma_{q/p_{T}}^{2} \end{cases}$

- Note 1: These formulas are the same as the ones used by Geant4
- Note 2: Applied to both Kalman Filter "step-by-step" and Seeding "globally"

GLOBAL HELIX FIT AND INITIAL COVARIANCE ESTIMATION

- Seeding for Kalman done with simple 3-point helix fit:
 - c = 1/r and $\sin \phi_0$ estimated by finding (z_c, y_c) and r of the yz plane circumference:

$$c = 1/r \qquad \sin \phi_0 = \frac{z_0}{r}$$

GLOBAL HELIX FIT AND INITIAL COVARIANCE ESTIMATION

- Seeding for Kalman done with simple 3-point helix fit:
 - c = 1/r and $\sin \phi_0$ estimated by finding (z_c, y_c) and r of the yz plane circumference:

$$c = 1/r \qquad \sin \phi_0 = \frac{z_0}{r}$$

• $\tan \lambda$ from the *yz* plane arc between the first two points and the correspondent movement in the *x* direction:

 $\tan \lambda = \frac{dx}{arc} = \frac{dx}{d\phi * r}$

• Note: Energy loss and MS corrections applied similarly to Kalman Filter

ENERGY LOSS AND MS

ENERGY LOSS: BETHE-BLOCH FORMULA

Bethe-Bloch (PDG) https://pdg.lbl.gov/2005 /reviews/passagerpp.pdf

$$\frac{1}{\rho}\frac{dE}{dx} = K \times \frac{Z}{A} \times \frac{z^2}{\beta^2} \left[\frac{1}{2} ln \left(\frac{2m_e c^2 \gamma^2 \beta^2 W_{max}}{I^2} \right) - \beta^2 - \frac{\delta}{2} \right] \quad [\text{GeV}/(g/cm^2)]$$

- $\rho = 1.032 \ g/cm^3$
- $K = 4\pi N_A r_e^2 m_e c^2 = 0.307\ 075\ MeV\ mol^{-1}cm^2$
- $Z/A = 0.54141 \ mol/g$
- Z
- $m_e c^2 = 0.511 \text{ MeV}$
- $W_{max} = 2m_e c^2 \beta^2 \gamma^2$
- $I = 64.7 \times 10^{-9} \, GeV$

Plastic scintillator density Bethe Bloch constant coefficient Mean atomic number/mass of plastic scintillator Atomic number of incident particle Mass of electron Low energy approximation of maximum energy transfer Mean excitation energy

$$\frac{\delta}{2} = \begin{cases} 0 & \ln\beta\gamma < 2.303x_0 \\ \ln\beta\gamma - 1/2C & \ln\beta\gamma > 2.303x_1 \\ \ln\beta\gamma - 1/2C + (1/2C - 2.303X_0) \times \left(\frac{2.303X_1 - \ln\beta\gamma}{2.303(X_1 - X_0)}\right)^3 & \ln\beta\gamma \in [2.303x_0, 2.303x_1] \end{cases}$$

with $C = 2 - \ln\left(\frac{28.816 \times 10^{-9}\sqrt{\rho(Z/A)}}{I}\right)$

 $x_0 = 0.1469$ $x_1 = 2.49$ 1st and 2nd junction points for plastic scintillator

ENERGY LOSS CORRECTION

Bethe-Bloch (PDG) https://pdg.lbl.gov/2005 /reviews/passagerpp.pdf

$$\frac{1}{\rho}\frac{dE}{dx} = K \times \frac{Z}{A} \times \frac{z^2}{\beta^2} \left[\frac{1}{2} ln \left(\frac{2m_e c^2 \gamma^2 \beta^2 W_{max}}{I^2} \right) - \beta^2 - \frac{\delta}{2} \right] \quad [\text{GeV}/(g/cm^2)]$$

- Step by step procedure:
 - 1. Convert into: $dp/dx = dE/dx \times \beta^{-1}$
 - 2. Calculate number of steps: $n_{steps} = 1 + (dp/dx \times \Delta x)/step$ with step = 0.005
 - 3. Calculate step-wise total momentum loss: $\Delta p_{tot} = \sum_{i=0}^{n_{steps}} \Delta p_i = \sum_{i=0}^{n_{steps}} \frac{dp}{dx_i} \Delta x_i$
 - 4. Calculate total energy loss $\Delta E = E_{in} \sqrt{p_{out}^2 + m^2}$ with $p_{out} = p_{in} \Delta p_{tot}$
 - 5. Apply multiplicative factor:

$$\frac{q}{p_T} *= cP4 = \left(1 + \frac{\Delta E}{p_{mean}^2} (\Delta E + 2 \times E_{in})\right)$$

6. Apply correction to covariance matrix:

$$P[4][4] += \left(\frac{\sigma_E}{p_{mean}^2} \times \frac{q}{p_T}\right)^2$$

KALMAN FILTER: MS CORRECTION

Molière Formula (PDG) https://pdg.lbl.gov/2005 /reviews/passagerpp.pdf

$$\theta_0 = \frac{13.6MeV}{\beta p} z \sqrt{x/X_0} [1 + 0.038 \ln(x/X_0)]$$

- $X_0 = 42.54 cm$ Radiation length of plastic scintillator in cm
- x is the step length
- *z* is the charge of incident particle
- Formulas for propagated σ 's:

$$\begin{cases} \sigma_{\sin\phi} = \theta_0 \cos\phi \sqrt{1 + \tan^2 \lambda} \\ \sigma_{\tan\lambda} = \theta_0 (1 + \tan^2 \lambda) \\ \sigma_{q/p_T} = \theta_0 \tan\lambda \frac{q}{p_T} \end{cases}$$

KALMAN FILTER: ENERGY LOSS CORRECTION

Bethe-Bloch (PDG) https://pdg.lbl.gov/2005 /reviews/passagerpp.pdf

$$\frac{1}{\rho}\frac{dE}{dx} = K \times \frac{Z}{A} \times \frac{z^2}{\beta^2} \left[\frac{1}{2} ln \left(\frac{2m_e \gamma^2 \beta^2 T_{max}}{I^2} \right) - \beta^2 - \frac{\delta}{2} \right] \quad [\text{GeV/(g/cm^2)]}$$

- Energy loss correction:
 - 1. Use multiplicative factor cP4 (see slide 7) to update q/p_T
 - 2. Add factor to diagonal element of 5x5 Covariance Matrix *P* correspondent to q/p_T (found through error propagation):

$$P[4][4] += \left(\frac{\sigma_E}{p_{mean}^2} \times \frac{q}{p_T}\right)^2$$

• NOTE: $\sigma_E = k \times \sqrt{|\Delta E|}$ where k is a tunable parameter set at 0.07

KALMAN FILTER: MS CORRECTION

Molière Formula (PDG) https://pdg.lbl.gov/2005 /reviews/passagerpp.pdf

$$\theta_0 = \frac{13.6MeV}{\beta p} z \sqrt{x/X_0} [1 + 0.038 \ln(x/X_0)]$$

- Multiple Scattering smearing simulated in three steps:
 - 1. Obtain parameter σ 's ($\sigma_{sin\phi}, \sigma_{tan\lambda}, \sigma_{q/p_T}$) through error propagation as described in slide 6
 - 2. Update covariance matrix diagonal elements:

 $\begin{cases} P[2][2] += \sigma_{sin\phi}^{2} \\ P[3][3] += \sigma_{tan \lambda}^{2} \\ P[4][4] += \sigma_{q/p_{T}}^{2} \end{cases}$

KALMAN FILTER

KALMAN FILTER IN GENERAL

1. Make a priori predictions for the current step's state and covariance matrix using the a posteriori best estimate of the previous step (i.e. updated using measurement)

Note: In the first iteration step we use step 0 estimates for the state vector and the covariance matrix (s_0, P_0) , which can be made very roughly

KALMAN FILTER IN GENERAL

2. Calculate the measurement residual and the Kalman Gain

RESIDUAL
$$\tilde{y}_k = m_k^h - H(s_k^-)$$
 R H KALMAN GAIN $K_k = P_k^- H^T (R + H P_k^- H^T)^{-1}$ MEASUREMENT
NOISE COVARIANCECONVERSION
MATRIX

3. Update the estimate

STATE VECTOR
$$s_k^+ = s_k^- + K_k \tilde{y}$$
COVARIANCE MATRIX $P_k^+ = (1 - K_k H) P_k^-$

Note: in the case where R is a null matrix $s_k^+ = s_k^h$ and $P_k^+ = 0$ Note: the conversion matrix is needed to make the dimensions of vectors and matrixes turn out right. For exemple if s_k^h is a 2-D vector and s_k^- is 5-D, then H would be a 2 × 5 matrix: $H = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix}$

KALMAN FILTER MODEL

• Use parametrization used in ALICE: free parameter z, state vector $s = (y, x, sin\phi, tan\lambda, \frac{q}{p_T})$ (ϕ azimuthal angle, λ dip-angle, p_T transverse momentum in yz plane), evolution function:

$$\frac{1}{1} \frac{dy}{dz} = \frac{k * (\sin\phi_0 + \sin\phi_1)}{k * (\cos\phi_0 + \cos\phi_1)}$$

$$\frac{y_1}{y_1} = y_0 + \frac{(\sin\phi_0 + \sin\phi_1)}{(\cos\phi_0 + \cos\phi_1)} * dz$$

$$\frac{1}{1} dx = \operatorname{arch} * \tan\lambda = \theta * r * \tan\lambda$$

$$\theta = \phi_1 - \phi_0 = \operatorname{arcsin}(\sin(\phi_1 - \phi_0)) =$$

$$= \operatorname{arcsin}(\cos\phi_0 \sin\phi_1 - \cos\phi_1 \sin\phi_0)$$

$$x_1 = x_0 + \tan\lambda * \frac{r}{q} * \operatorname{arcsin}(\cos\phi_0 \sin\phi_1 - \cos\phi_1 \sin\phi_0)$$

KALMAN FILTER MODEL

• Use parametrization used in ALICE: free parameter z, state vector $(y, x, sin\phi, tan\lambda, \frac{q}{p_T})$ (ϕ azimuthal angle, λ dipangle, p_T transverse momentum in yz plane), evolution function:

2)
$$dz = r * \sin \phi_1 - r * \sin \phi_0$$

 $\sin \phi_1 = \sin \phi_0 + \frac{dz}{r}$

45

HELIX FIT

1/r

- c = 1/r and $\sin \phi_0$ estimated by finding (z_c, y_c) and r of the yz plane circomference passing through the first, last and middle hit point of the particle trajectory
- After traslating the coordinate system to have the origin on the first point $(z_0, y_0) \rightarrow (0,0)$ we have the circumference equations:

$$\begin{cases} z_{C}^{2} + y_{C}^{2} = r^{2} \\ (z_{1} - z_{C})^{2} + (y_{1} - y_{C})^{2} = r^{2} \\ (z_{2} - z_{C})^{2} + (y_{2} - y_{C})^{2} = r^{2} \end{cases}$$

$$\begin{cases} z_{C} = \frac{1}{2} \left(z_{2} - y_{2} \frac{z_{1}(z_{1} - z_{2}) + y_{1}(y_{1} - y_{2})}{z_{2}y_{1} - z_{1}y_{2}} \right) \\ y_{C} = \frac{1}{2} \left(z_{2} - y_{2} \frac{z_{1}(z_{1} - z_{2}) + y_{1}(y_{1} - y_{2})}{z_{2}y_{1} - z_{1}y_{2}} \right) \end{cases}$$

$$r = \sqrt{z_{C}^{2} + y_{C}^{2}}$$

We evaluate tan λ from the yz plane arc between the first two points and the correspondent movement in the x direction (magnetic field direction) using r estimate from previous step:

- Given parameter estimation from global helix fit, estimate uncertainties through error propagation
- Uncertainties associated with x and y: σ_{xy} ; z free parameter with no uncertainty $\sigma_z = 0$ (as in the Kalman filter)
- Formula for $\sin \phi_0$ estimation is function of $f(z_0, y_0, z_1, y_1, z_2, y_2)$ but since $\sigma_z = 0$, consider only $f(y_0, y_1, y_2) \rightarrow$ From error propagation we get:

$$\sigma_{\sin\phi_0} = \sqrt{\left(\frac{\partial f(y_0, y_1, y_2)}{\partial y_0}\right)^2 \sigma_{xy}^2 + \left(\frac{\partial f(y_0, y_1, y_2)}{\partial y_2}\right)^2 \sigma_{xy}^2 + \left(\frac{\partial f(y_0, y_1, y_2)}{\partial y_3}\right)^2 \sigma_{xy}^2}$$

• This can be approximated as:

$$\sigma_{\sin\phi_0} = \sqrt{\left(\frac{f(y_0 + \sigma_{xy}, y_1, y_2)}{\sigma_{xy}}\right)^2 \sigma_{xy}^2 + \left(\frac{f(y_0, y_1 + \sigma_{xy}, y_2)}{\sigma_{xy}}\right)^2 \sigma_{xy}^2 + \left(\frac{f(y_0, y_1, y_2 + \sigma_{xy})}{\sigma_{xy}}\right)^2 \sigma_{xy}^2}$$

- Repeat the process with other parameters to get respective uncertainties
- Estimate for covariance matrix P_0 is diagonal matrix with:

$$P_0 = \begin{pmatrix} \sigma_{xy}^2 & 0 & 0 & 0 & 0 \\ 0 & \sigma_{xy}^2 & 0 & 0 & 0 \\ 0 & 0 & \sigma_{sin\phi}^2 & 0 & 0 \\ 0 & 0 & 0 & \sigma_{tan\lambda}^2 & 0 \\ 0 & 0 & 0 & 0 & \sigma_{q/p_T}^2 \end{pmatrix}$$

• Note: off-diagonal elements could also be calculated, but are not at the moment

