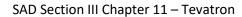
TEVATRON

SECTION III CHAPTER 11 OF THE FERMILAB SAD

Revision 0 August 8, 2023

This Chapter of the Fermilab Safety Assessment Document (SAD) contains a summary of the results of the Safety Analysis for the Tevatron of the Fermi Main Accelerator that are pertinent to understanding the risks to the workers, the public, and the environment due to its operation.



SAD Chapter Review

This Section III, Chapter 11 of the Fermi National Accelerator Laboratory (Fermilab) Safety Assessment Document (SAD), *Tevatron*, was prepared and reviewed by the staff of the Accelerator Directorate, Beams Division, External Beams Delivery Department in conjunction with the Environment, Safety & Health Division (ESH) Accelerator Safety Department.

Signatures below indicate review of this Chapter, and recommendation that it be approved and incorporated into the Fermilab SAD.

Line Organization Owner	Accelerator Safety Department Head
SAD Review Subcommittee Cl	

Revision History

Printed versions of this Chapter of the Fermilab Safety Assessment Document (SAD) may not be the currently approved revision. The current revision of this Chapter can be found on ESH DocDB #1066 along with all other current revisions of all Chapters of the Fermilab SAD.

Author		Rev. No.	Date	Description of Change
Thomas Kobilarcik	R.	0	August 8, 2023	Initial release of the Tevatron Chapter for the Fermilab Safety Assessment Document (SAD)

Table of Contents

SAD Cha	apter Revie	W	2
Revision	History		4
Table of	Contents		6
Acronyn	ns and Abb	reviations	10
III-11.	Tevatron		16
III-11.	.1. Intro	oduction	16
111-2	11.1.1 Po	urpose/Function	16
111-2	11.1.2 C	urrent Status	16
-1	11.1.3 D	escription	16
111-2	11.1.4 Lo	ocation	16
111-2	11.1.5 N	lanagement Organization	17
111-2	11.1.6 O	perating Modes	17
111-2	11.1.7 In	ventory of Hazards	17
III-11.	.2		19
III-11.	.3. Safe	ty Assessment	19
111-2	11.3.1 R	adiological Hazards	20
I	II-11.3.1.1	Prompt Ionizing Radiation	20
I	II-11.3.1.2	Residual Activation	20
I	II-11.3.1.3	Groundwater Activation	20
I	II-11.3.1.4	Surface Water Activation	20
I	II-11.3.1.5	Radioactive Water (RAW) Systems	21
I	II-11.3.1.6	Air Activation	21
I	II-11.3.1.7	Closed Loop Air Cooling	21
I	II-11.3.1.8	Soil Interactions	21
I	II-11.3.1.9	Radioactive Waste	21
I	II-11.3.1.10	Contamination	21
I	II-11.3.1.11	Beryllium-7	21
I	II-11.3.1.12	Radioactive Sources	21
I	II-11.3.1.13	Nuclear Material	22
I	II-11.3.1.14	Radiation Generating Devices (RGDs)	22
I	II-11.3.1.15	Non-Ionizing Radiation Hazards	22

III-11.3.2 T	oxic Materials	22
III-11.3.2.1	Lead	22
III-11.3.2.2	Beryllium	22
III-11.3.2.3	Fluorinert & Its Byproducts	22
III-11.3.2.4	Liquid Scintillator Oil	22
III-11.3.2.5	Pseudocumene	22
III-11.3.2.6	Ammonia	22
III-11.3.2.7	Nanoparticle Exposures	22
III-11.3.3 F	lammables and Combustibles	22
III-11.3.3.1	Combustible Materials	22
III-11.3.3.2	Flammable Materials	23
III-11.3.4 E	lectrical Energy	23
III-11.3.4.1	Stored Energy Exposure	23
III-11.3.4.2	High Voltage Exposure	23
III-11.3.4.3	Low Voltage, High Current Exposure	23
III-11.3.5 T	hermal Energy	23
III-11.3.5.1	Bakeouts	23
III-11.3.5.2	Hot Work	23
III-11.3.5.3	Cryogenics	23
III-11.3.6 K	Cinetic Energy	23
III-11.3.6.1	Power Tools	23
III-11.3.6.2	Pumps and Motors	23
III-11.3.6.3	Motion Tables	24
III-11.3.6.4	Mobile Shielding	24
III-11.3.7 F	Potential Energy	24
III-11.3.7.1	Crane Operations	24
III-11.3.7.2	Compressed Gasses	24
III-11.3.7.3	Vacuum/Pressure Vessels/Piping	24
III-11.3.7.4	Vacuum Pumps	24
III-11.3.7.5	Material Handling	24
III-11.3.8 N	Лagnetic Fields	24
III-11.3.8.1	Fringe Fields	24

III-11.3.9 Other Hazards	24
III-11.3.9.1 Confined Spaces	25
III-11.3.9.2 Noise	25
III-11.3.9.3 Silica	25
III-11.3.9.4 Ergonomics	25
III-11.3.9.5 Asbestos	25
III-11.3.9.6 Working at Heights	25
III-11.3.10 Access & Egress	25
III-11.3.10.1 Life Safety Egress	25
III-11.3.11 Environmental	25
III-11.3.11.1 Hazard to Air	25
III-11.3.11.2 Hazard to Water	26
III-11.3.11.3 Hazard to Soil	26
III-11.4. Summary of Hazards to Members of the Public	26
III-11.5. Summary of Credited Controls	26
III-11.5.1 Passive Credited Controls	26
III-11.5.1.1 Shielding	26
III-11.5.1.1.1 Permanent Shielding Including Labyrinths	26
III-11.5.1.1.2 Movable Shielding	26
III-11.5.1.1.3 Penetration Shielding	26
III-11.5.1.2 Fencing	26
III-11.5.1.2.1 Radiation Area Fencing	26
III-11.5.1.2.2 Controlled Area Fencing	26
III-11.5.2 Active Engineered Credited Controls	27
III-11.5.2.1 Radiation Safety Interlock System	27
III-11.5.2.2 ODH Safety System	27
III-11.5.3 Administrative Credited Controls	27
III-11.5.3.1 Operation Authorization Document	27
III-11.5.3.2 Staffing	27
III-11.5.3.3 Accelerator Operating Parameters	27
III-11.6. Defense-in-Depth Controls	27
III-11.7. Machine Protection Controls	27

III-11.8.	Decommissioning	27
III-11.9.	Summary and Conclusion	27
III-11.10.	References	27
III-11.11.	Appendix – Risk Matrices	28

Acronyms and Abbreviations

ACGIH American Conference of Governmental Industrial Hygienists

ACNET Accelerator Control Network System

AD Accelerator Directorate

AHJ Authority Having Jurisdiction

ALARA As Low As Reasonably Achievable
ANSI American National Standards Institute

APS-TD Applied Physics and Superconducting Technology Directorate

ARA Airborne Radioactivity Area
ASE Accelerator Safety Envelope

ASHRAE American Society of Heating, Refrigerating and Air Conditioning Engineers

ASME American Society of Mechanical Engineers

ASO Accelerator Safety Order, referring to DOE O 420.2D Safety of Accelerators

⁷Be Beryllium-7

BLM Beam Loss Monitor
BNB Booster Neutrino Beam
BPM Beam Position Monitor

BY Boneyard

CA Controlled Area
CA Contamination Area

CAS Contractor Assurance System

CC Credited Control
CCL Coupled Cavity Linac
CDC Critical Device Controller

CERN European Organization for Nuclear Research

CFM Cubic Feet per Minute

CFR Code of Federal Regulations (United States)

Ci Curie

CLW Co-Located Worker (the worker in the vicinity of the work but not actively

participating)

cm centimeter

CPB Cryogenics Plant Building

CSO Chief Safety Officer
CUB Central Utility Building
CW Continuous Wave

CX Categorically Excluded

D&D Decontamination and Decommissioning

DA Diagnostic Absorber

DAE Department of Atomic Energy India

DCS Derived Concentration Standard

DocDB Document Database
DOE Department of Energy

DOT Department of Transportation

DR Delivery Ring

DSO Division Safety Officer
DSS Division Safety Specialist

DTL Drift Tube Linac

DUNE Deep Underground Neutrino Experiment

EA Environmental Assessment

EA Exclusion Area
EAV Exhaust Air Vent

EENF Environmental Evaluation Notification Form

EMS Environmental Management System

EOC Emergency Operations Center
EPA Environmental Protection Agency
ES&H Environment, Safety and Health

Fermilab Fermi National Accelerator Laboratory, see also FNAL

FESHCom Fermilab ES&H Committee

FESHM Fermilab Environment, Safety and Health Manual

FHS Fire Hazard Subcommittee

FIRUS Fire Incident Reporting Utility System

FNAL Fermi National Accelerator Laboratory, see also Fermilab

FODO Focus-Defocus

FONSI Finding of No Significant Impact
FQAM Fermilab Quality Assurance Manual

FRA Fermi Research Alliance

FRCM Fermilab Radiological Control Manual

FSO Fermilab Site Office

FW Facility Worker (the worker actively performing the work)

GERT General Employee Radiation Training

GeV Giga-electron Volt

³H Tritium

HA Hazard Analysis

HAR Hazard Analysis Report
HCA High Contamination Area

HCTT Hazard Control Technology Team

HEP High Energy Physics

HFD Hold for Decay

HLCF High Level Calibration Facility

HPR Highly Protected Risk

Hr Hour

HRA High Radiation Area

HSSD High Sensitivity Air Sampling Detection
HVAC Heating, Ventilation, and Air Conditioning

HWSF Hazardous Waste Storage Facility

Hz Hertz

IB Industrial Building

IBC International Building Code
ICW Industrial Cooling Water

IEPA Illinois Environmental Protection Agency

IEEE Institute of Electrical and Electronics Engineers

INFN Istituto Nazionale di Fisica Nucleare

IMPACT Integrated Management Planning and Control Tool

IPCBIllinois Pollution Control BoardIQAIntegrated Quality AssuranceISDInfrastructure Services DivisionISMIntegrated Safety Management

ITNA Individual Training Needs Assessment

KeV kilo-electron volt

kg kilo-grams kW kilo-watt

LBNF Long Baseline Neutrino Facility

LCW Low Conductivity Water LHC Harge Hadron Collider

LLCF Low Level Calibration Facility

LLWCP Low Level Waste Certification Program
LLWHF Low Level Waste Handling Facility

LOTO Lockout/Tagout

LPM Laser Profile Monitor

LSND Liquid Scintillator Neutrino Detector

LSO Laser Safety Officer

m meter mA milli-amp

MABAS Mutual Aid Box Alarm System

MARS Monte Carlo Shielding Computer Code

MC Meson Center

MC&A Materials Control and Accountability

MCR Main Control Room

MEBT Medium Energy Beam Transport
MEI Maximally Exposed Individual

MeV Mega-electron volt

MI Main Injector

MINOS Main Injector Neutrino Oscillation Search

MMR Material Move Request

MOI Maximally-Exposed Offsite Individual (Note: due to the Fermilab Batavia Site being

open to the public, the location of the MOI is taken to be the location closest to the

accelerator that is accessible to members of the public.)

MP Meson Polarized

mrad milli-radian mrem milli-rem

mrem/hr milli-rem per hour

MT Meson Test

MTA 400 MeV Test Area
MTF Magnet Test Facility

²²Na Sodium-22

NC Neutrino Center NE Neutrino East

NEC National Electrical Code

NEPA National Environmental Policy Act

NESHAPS National Emissions Standards for Hazardous Air Pollutants

NFPA National Fire Protection Association

NM Neutrino Muon

NMR Nuclear Material Representative

NOvA Neutrino Off-axis Electron Neutrino (ve) Appearance

NPH Natural Phenomena Hazard

NRTL Nationally Recognized Testing Laboratory

NIF Neutron Irradiation Facility

NTSB Neutrino Target Service Building, see also TSB

NuMI Neutrinos at the Main Injector

NW Neutrino West

ODH Oxygen Deficiency Hazard

ORC Operational Readiness Clearance

OSHA Occupational Safety and Health Administration

pCi pico-Curie

pCi/mL pico-Curie per milliliter
PE Professional Engineer

PIN Personal Identification Number

PIP Proton Improvement Plan
PIP-II Proton Improvement Plan - II

PHAR Preliminary Hazards Analysis Report

PPD Particle Physics Directorate

PPE Personnel Protective Equipment

QA Quality Assurance

QAM Quality Assurance Manual

RA Radiation Area

RAF Radionuclide Analysis Facility

RAW Radioactive Water

RCT Radiological Control Technician

RF Radio-Frequency

RFQ Radio-Frequency Quadrupole

RIL RFQ Injector Line

RMA Radioactive Material Area

RMS Root Mean Square

RPCF Radiation Physics Calibration Facility

RPE Radiation Physics Engineering Department
RPO Radiation Physics Operations Department

RRM Repetition Rate Monitor RSI Reviewed Safety Issue

RSIS Radiation Safety Interlock System

RSO Radiation Safety Officer RWP Radiological Work Permit SA Shielding Assessment

SAA Satellite Accumulation Areas SAD Safety Assessment Document

SCF Standard Cubic Feet

SCFH Standard Cubic Feet per Hour

SEWS Site-Wide Emergency Warning System

SNS Spallation Neutron Source

SR Survey Riser

SRF Superconducting Radio-Frequency SRSO Senior Radiation Safety Officer SSB Switchyard Service Building

SSP Site Security Plan

SWIC Segmented Wire Ionization Chambers

TLM Total Loss Monitor

TLVs Threshold Limit Values
TPC Time Projection Chamber
TPES Target Pile Evaporator Stack

TPL Tagged Photon Lab

TSB Target Service Building, see also NTSB

TSCA Toxic Substances Control Act
TSW Technical Scope of Work
T&I Test and Instrumentation
UPB Utility Plant Building

UPS Uninterruptible Power Supply
USI Unreviewed Safety Issue
VCTF Vertical Cavity Test Facility
VHRA Very High Radiation Area
VMS Village Machine Shop

VMTF Vertical Magnet Test Facility

VTS Vertical Test Stand

WSHP Worker Safety and Health Program

μs micro-second

III-11. Tevatron

III-11.1. Introduction

This Section III, Chapter 11 of the Fermi National Accelerator Laboratory (Fermilab) Safety Assessment Document (SAD) covers the Tevatron segment of the Fermilab Main Accelerator (Accelerator Segments).

III-11.1.1 <u>Purpose/Function</u>

The Tevatron segment of the Fermilab Main Accelerator had housed the Tevatron and Main Ring accelerators, and associated infrastructure. These accelerators are no longer operational; the infrastructure, unless noted, is not used.

The CO region has been repurposed for radioactive storage.

III-11.1.2 <u>Current Status</u>

The Tevatron segment of the Fermilab Main Accelerator is currently: Non-Operational

III-11.1.3 Description

The Tevatron segment consists of the unused portion of the Tevatron / Main Ring enclosure (sections A24 through E47, inclusive), and the associated service buildings. The C0 region, which has been repurposed for radioactive storage. Beam transport is no longer possible in the Tevatron / Main Ring Area. The remainder of the geographic area houses legacy equipment associated with the Tevatron program.

III-11.1.4 Location

The Tevatron segment of the Fermilab Main Accelerator is located on the Fermilab site in Batavia, IL.

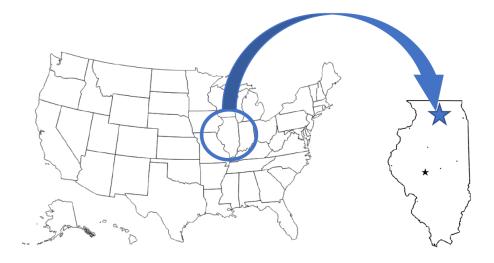


Figure 1. Regional view showing the location of the Fermilab site in Batavia, IL.

The Tevatron segment is located in the south-west corner of the laboratory on the Fermilab site.

Figure 2. Aerial view of the Fermilab site, indicating the location of the Tevatron segment.

III-11.1.5 Management Organization

The Tevatron segment is managed by the Accelerator Directorate, Beams Division, External Beams Delivery Department.

III-11.1.6 Operating Modes

The Tevatron segment is non-operational.

III-11.1.7 Inventory of Hazards

The following table lists all of the identified hazards found in the Tevatron segment enclosure and support buildings. Section I-1.10 *Appendix – Risk Matrices* describes the baseline risk (i.e., unmitigated risk), any preventative controls and/or mitigative controls in place to reduce the risk, and residual risk (i.e., mitigated risk) for facility worker, co-located worker and Maximally Exposed Offsite Individual (MOI) (i.e., members of the public). A summary of these controls is described within Section I-1.2 *Safety Assessment*.

Prompt ionizing, Oxygen Deficiency Hazards due to cryogenic systems within accelerator enclosures, and fluorinert byproducts due to use of fluorinert that is subject to particle beam have been identified as accelerator specific hazards, and as such their controls are identified as Credited Controls. The analysis of these hazards and their Credited Controls will be discussed within this SAD Chapter, and their Credited Controls summarized in the Accelerator Safety Envelope for the Fermilab Main Accelerator specific controls are identified as purple/bold throughout this Chapter.

All other hazards present in the Tevatron Area are safely managed by other DOE approved applicable safety and health programs and/or processes, and their analyses have been performed according to applicable DOE requirements as flowed down through the Fermilab Environment, Safety and Health Manual (FESHM). These hazards are considered to be Standard Industrial Hazards (SIH), and their analysis will be summarized in this SAD Chapter.

Table 1. Hazard Inventory for Tevatron segment.

Radiological		Toxic Materials		
	Prompt Ionizing Radiation	\boxtimes	Lead	
	Residual Activation		Beryllium	
	Groundwater Activation		Fluorinert & Its Byproducts	
	Surface Water Activation		Liquid Scintillator Oil	
	Radioactive Water (RAW) Systems		Ammonia	
	Air Activation		Nanoparticle Exposures	
	Closed Loop Air Cooling		Flammables and Combustibles	
	Soil Interactions	\boxtimes	Combustible Materials (e.g., cables, wood cribbing, etc.)	
	Radioactive Waste		Flammable Materials (e.g., flammable gas, cleaning materials, etc.)	
\boxtimes	Contamination		Electrical Energy	
	Beryllium-7		Stored Energy Exposure	
	Radioactive Sources	\boxtimes	High Voltage Exposure	
	Nuclear Material		Low Voltage, High Current Exposure	
	Radiation Generating Devices (RGDs)		Kinetic Energy	
	Non-Ionizing Radiation Hazards		Power Tools	
	Thermal Energy		Pumps and Motors	
	Bakeout		Motion Tables	
	Hot Work		Mobile Shielding	
	Cryogenics		Magnetic Fields	
	Potential Energy		Fringe Fields	
	Crane Operations		Other Hazards	
	Compressed Gasses		Confined Spaces	
	Vacuum/Pressure Vessels/Piping		Noise	
			Silica	
	Vacuum Pumps			
	Vacuum Pumps Material Handling	\boxtimes	Ergonomics	
	·		Ergonomics Asbestos	

III-11.2. Safety Assessment

All hazards for the Tevatron segment of the Fermilab Main Accelerator are summarized in this section, with additional details of the analyses for accelerator specific hazards.

III-11.2.1 Radiological Hazards

The Tevatron Area presents radiological hazards in the form of residual activation, groundwater activation, radioactive waste, and contamination.

III-11.2.1.1 Prompt Ionizing Radiation

Not Applicable. The Tevatron is non-operational.

III-11.2.1.2 Residual Activation

Residual radiation due to past activation of beam line components remains. Residual radiation can give rise to radiation exposures to personnel during accesses to the beam enclosures for repair, maintenance, decommissioning and inspection activities.

In most situations, general RWPs for accesses will suffice. A job-specific RWP and/or an ALARA ("as-low-as-reasonably-achievable") plan will be required for work on any highly activated or contaminated equipment per Fermilab Radiological Control Manual (FRCM) requirements. These tasks will be supervised by members of the Radiological Control Organization under the direction of the assigned Radiation Safety Officer (RSO).

The Radiation Survey, dated October 3, 2011, indicates that the highest residual dose rate, excluding CO, is 35 mrem/hr at 1 foot. All residual activation is associated with components located in the Tevatron tunnels.

Assuming 2000 hours of exposure, the dose received would be 70,000 mrem (70 rem) at 1 foot. This is the baseline dose (consequence) assumed for workers (W) and co-located workers (CW). This value is scored as a medium consequence (M).

Assuming 8670 hours of exposure, the received dose would be 306,600 mren (306 rem) at 1 foot. This is the baseline dose (consequence) assumed for a maximally exposed individual (MOI). Public access to the Tevatron Area is excluded by the public access gates, making MOI access beyond-extremely-unlikely (BEU) as the baseline likelihood. This results in baseline risk IV.

Because the tunnels are inaccessible to the public, credit may be taken for the tunnel walls and overburden. Using the tenth-layer-values for concrete (0.8717 m) and soil (1.0302 m), a calculation indicated that the 16-inch-thick concrete walls, along with an additional 26 inches of soil, provide sufficient shielding to attenuate the yearly (8760) dose to 24 rem. This mitigative measure reduces the residual risk to medium (M), lowering the overall residual risk score to IV.

Residual activation for CO is covered in III-11.2.1.9 Radioactive Waste.

III-11.2.1.3 Groundwater Activation

Groundwater activation is addressed in Section 1, Chapter 4.

III-11.2.1.4 Surface Water Activation

N/A.

III-11.2.1.5 Radioactive Water (RAW) Systems

N/A.

III-11.2.1.6 Air Activation

N/A.

III-11.2.1.7 Closed Loop Air Cooling

N/A.

III-11.2.1.8 Soil Interactions

N/A.

III-11.2.1.9 Radioactive Waste

Radioactive waste is no longer produced the Tevatron tunnels; The Tevatron is non-operational.

Radioactive waste produced in CO operations will be managed within the established Radiological Protection Program (RPP) and as prescribed in the Fermilab Radiological Control Manual (FRCM).

Radioactive waste is a standard radiological hazard that is managed within the established Radiological Protection Program (RPP) and as prescribed in the Fermilab Radiological Control Manual (FRCM). Waste minimization is an objective of the equipment design and operational procedures. Although production of radioactive material is not an operational function of the Tevatron, beam loss and, in the case of some beam diagnostics devices, intentional interception of the beam will result in activation of beam line elements. Reuse of activated items will be carried out when feasible. Activated items that cannot be reused will be disposed of as radioactive waste in accordance with the FRCM requirements.

The Tevatron is non-operational; radioactive waste is not being generated.

The CO facility is a long-term radioactive waste storage facility. The storage building is locked. Within the building, radioactive waste is stored within vaults. The vaults are sealed with heavy shielding doors, requiring motors or a crane for access. The energy source for the motor or crane is locked.

Job specific work plans are developed for radioactive waste handling. Radioactive waste is handled remotely. Personal protective equipment is used as per the work plan.

III-11.2.1.10 Contamination

N/A.

III-11.2.1.11 Beryllium-7

N/A.

III-11.2.1.12 Radioactive Sources

N/A.

III-11.2.1.13 Nuclear Material

N/A.

III-11.2.1.14 Radiation Generating Devices (RGDs)

N/A.

III-11.2.1.15 Non-Ionizing Radiation Hazards

N/A.

III-11.2.2 <u>Toxic Materials</u>

III-11.2.2.1 Lead

This hazard has been evaluated within the common Risk Matrix table included in SAD Section I Chapter 04 *Safety Analysis*. Work in the Tevatron Area involving this hazard implements the controls specified in the common Risk Matrix table. No unique controls are in use.

III-11.2.2.2 Beryllium

N/A.

III-11.2.2.3 Fluorinert & Its Byproducts

N/A.

III-11.2.2.4 Liquid Scintillator Oil

N/A.

III-11.2.2.5 Pseudocumene

N/A.

III-11.2.2.6 Ammonia

N/A.

III-11.2.2.7 Nanoparticle Exposures

N/A.

III-11.2.3 Flammables and Combustibles

III-11.2.3.1 Combustible Materials

This hazard has been evaluated within the common Risk Matrix table included in SAD Section I Chapter 04 *Safety Analysis*. Work in the Tevatron Area involving this hazard implements the controls specified in the common Risk Matrix table. No unique controls are in use.

III-11.2.3.2 Flammable Materials

N/A.

III-11.2.4 Electrical Energy

The AD DSO has applied administrative locks on the power supplies to limit the ability to send power into the tunnel.

III-11.2.4.1 Stored Energy Exposure

N/A.

III-11.2.4.2 High Voltage Exposure

Future work in the Tevatron Area involving this hazard would implement the controls specified.

III-11.2.4.3 Low Voltage, High Current Exposure

Future work in the Tevatron Area involving this hazard would implement the controls specified.

III-11.2.5 Thermal Energy

The Tevatron Area does not have thermal energy hazards. Future work in the Tevatron Area involving these hazards would implement the controls specified in Section I Chapter IV.

III-11.2.5.1 Bakeouts

N/A.

III-11.2.5.2 Hot Work

N/A.

III-11.2.5.3 Cryogenics

N/A.

III-11.2.6 Kinetic Energy

Hazards associated with kinetic energy are discussed in the following sections.

III-11.2.6.1 Power Tools

This hazard has been evaluated with in the common risk matrix table included in SAC Section I Chapter IV Safety Analysis. Work in the Tevatron Involving this hazard will implement the controls specified.

III-11.2.6.2 Pumps and Motors

This hazard has been evaluated with in the common risk matrix table included in SAC Section I Chapter IV Safety Analysis. Work in the Tevatron Involving this hazard will implement the controls specified.

III-11.2.6.3 Motion Tables

N/A.

III-11.2.6.4 Mobile Shielding

This hazard has been evaluated within the common Risk Matrix table included in SAD Section I Chapter 04 *Safety Analysis*. Work in the Tevatron Area involving this hazard implements the controls specified in the common Risk Matrix table. No unique controls are in use.

III-11.2.7 Potential Energy

Hazards associated with potential energy are assessed in this chapter.

III-11.2.7.1 Crane Operations

This hazard has been evaluated within the common Risk Matrix table included in SAD Section I Chapter 04 *Safety Analysis*. Work in the Tevatron Area involving this hazard implements the controls specified in the common Risk Matrix table. No unique controls are in use.

III-11.2.7.2 Compressed Gasses

N/A.

III-11.2.7.3 Vacuum/Pressure Vessels/Piping

N/A.

III-11.2.7.4 Vacuum Pumps

N/A.

III-11.2.7.5 Material Handling

This hazard has been evaluated with in the common risk matrix table included in SAC Section I Chapter IV Safety Analysis. Work in the Tevatron Involving this hazard will implement the controls specified.

III-11.2.8 Magnetic Fields

The Tevatron is non-operational. Powered magnets have been de-energized; permanent magnets are not present.

III-11.2.8.1 Fringe Fields

N/A.

III-11.2.9 Other Hazards

Routine operations are limited to maintenance, such as sump pump repair/replacement.

III-11.2.9.1 Confined Spaces

This hazard has been evaluated within the common Risk Matrix table included in SAD Section I Chapter 04 *Safety Analysis*. Work in the Tevatron Area involving this hazard implements the controls specified in the common Risk Matrix table. No unique controls are in use.

III-11.2.9.2 Noise

N/A.

III-11.2.9.3 Silica

N/A.

III-11.2.9.4 Ergonomics

This hazard has been evaluated within the common Risk Matrix table included in SAD Section I Chapter 04 *Safety Analysis*. Work in the Tevatron Area involving this hazard implements the controls specified in the common Risk Matrix table. No unique controls are in use.

III-11.2.9.5 Asbestos

N/A.

III-11.2.9.6 Working at Heights

This hazard has been evaluated within the common Risk Matrix table included in SAD Section I Chapter 04 *Safety Analysis*. Work in the Tevatron Area involving this hazard implements the controls specified in the common Risk Matrix table. No unique controls are in use.

III-11.2.10 Access & Egress

Hazards associated with access & egress are addressed below.

III-11.2.10.1 Life Safety Egress

This hazard has been evaluated within the common Risk Matrix table included in SAD Section I Chapter 04 *Safety Analysis*. Work in the Tevatron Area involving this hazard implements the controls specified in the common Risk Matrix table. No unique controls are in use.

III-11.2.11 Environmental

Environmental hazards are addressed below.

III-11.2.11.1 Hazard to Air

This hazard has been evaluated within the common Risk Matrix table included in SAD Section I Chapter 04 *Safety Analysis*. Work in the Tevatron Area involving this hazard implements the controls specified in the common Risk Matrix table. No unique controls are in use.

III-11.2.11.2 Hazard to Water

This hazard has been evaluated within the common Risk Matrix table included in SAD Section I Chapter 04 *Safety Analysis*. Work in the Tevatron Area involving this hazard implements the controls specified in the common Risk Matrix table. No unique controls are in use.

III-11.2.11.3 Hazard to Soil

This hazard has been evaluated within the common Risk Matrix table included in SAD Section I Chapter 04 *Safety Analysis*. Work in the Tevatron Area involving this hazard implements the controls specified in the common Risk Matrix table. No unique controls are in use.

III-11.3. Summary of Hazards to Members of the Public

Public access to the Tevatron, including CO, is restricted by the access gates.

III-11.4. Summary of Credited Controls

The Tevatron is non-operational and thus does not require any passive, active engineered, or administrative controls that rise to the level of a Credited Control needing inclusion in the Accelerator Safety Envelope.

III-11.4.1 Passive Credited Controls

The Proton Area is non-operational. There are no passive credited controls.

III-11.4.1.1 Shielding

N/A.

III-11.4.1.1.1 Permanent Shielding Including Labyrinths

N/A.

III-11.4.1.1.2 Movable Shielding

N/A.

III-11.4.1.1.3 Penetration Shielding

N/A.

III-11.4.1.2 Fencing

N/A.

III-11.4.1.2.1 Radiation Area Fencing

N/A.

III-11.4.1.2.2 Controlled Area Fencing

N/A.

III-11.4.2 Active Engineered Credited Controls

The Tevatron is non-operational. There are no active engineered credited controls in the Tevatron.

III-11.4.2.1 Radiation Safety Interlock System

N/A.

III-11.4.2.2 ODH Safety System

N/A.

III-11.4.3 Administrative Credited Controls

Tevatron Area is non-operational. There are no administrative credited controls.

III-11.4.3.1 Operation Authorization Document

N/A.

III-11.4.3.2 Staffing

N/A.

III-11.4.3.3 Accelerator Operating Parameters

N/A.

III-11.5. Defense-in-Depth Controls

In addition to service building doors (initial access point) being locked, tunnel access gates are locked. The tunnel-access key must be obtained from the Main Control Room.

As discussed in Section III-11.2.1.2 (Residual Activation), 26 inches of soil surrounding the Tevatron tunnels (excluding CO) is sufficient to reduce the MOI risk to IV. Additional soil is considered defense-in-depth.

III-11.6. Machine Protection Controls

Tevatron is non-operational; there are no machine protection controls.

III-11.7. Decommissioning

DOE Field Element Manager approval shall be obtained prior to the start of any decommissioning activities for Tevatron area.

III-11.8. Summary and Conclusion

III-11.9. References

[1] Fermilab Radiological Control Manual

III-11.10. Appendix – Risk Matrices

Risk Assessment methodology was developed based on the methodology described in DOE-HDBK-1163-2020. Hazards and their potential events are evaluated for likelihood and potential consequence assuming no controls in place, which results in a baseline risk. A baseline risk (i.e., an unmitigated risk) value of III and IV does not require further controls based on the Handbook. Events with a baseline risk value of I or II do require prevention and/or mitigation measures to be established in order to reduce the risk value to an acceptable level of III or IV. Generally, preventive controls are applied prior to a loss event, reflecting a likelihood reduction, and mitigative controls are applied after a loss event, reflecting a consequence reduction. For each control put in place, likelihood or consequence can have a single "bin drop", resulting in a new residual risk (i.e., a mitigated risk). This risk assessment process is repeated for each hazard for Facility Workers (FW), Co-Located Workers (CLW), and Maximally-Exposed Offsite Individual (MOI). At the conclusion of the risk assessments, controls that are in place for the identified accelerator specific hazards are identified as Credited Controls and further summarized in Section I-1.4 of this Chapter.