$^{207}Bi\,{ m source}$

A status of activities @ LIP

Working Group meeting (Zoom - 21st September, 2023)

F. Barao

BI207 WG - Sep 21, 2023 (F. Barao)

Data analysis framework

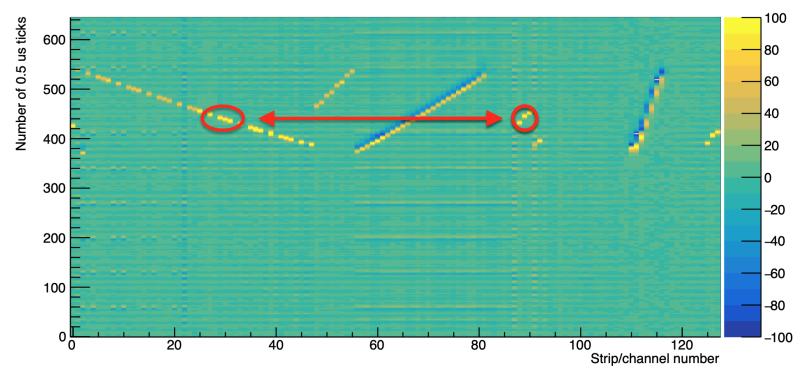
From RAW data to analysis ROOT trees: 2-step process

We started using the python decoder (Serhan, Furkan) to read RAW data and convert it to JSON format

After, we developed a JSON reader in C++ to produce ROOT trees (F. Barao)

Alternatively, we also developed a JSON python reader to produce ROOT trees (J. Maneira)

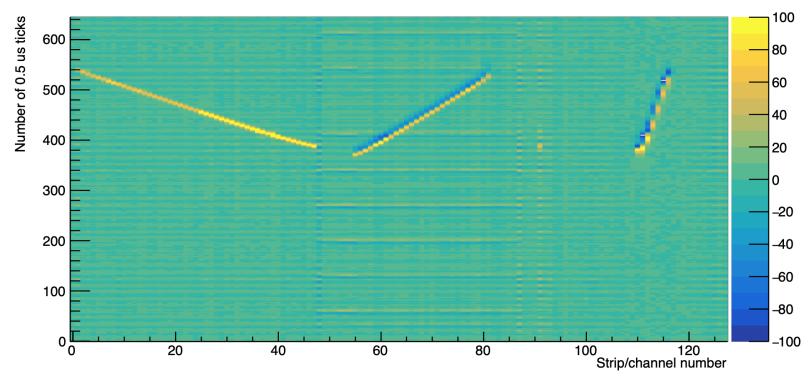
Data analysis framework (cont.)


From RAW data to analysis ROOT trees: 1-step process in progress

We are working in a C++ code able to read and process the RAW data and create ROOT trees (F. Barao, J. Antunes)

ROOT trees will include raw data information and some processing as: peak-finding, baseline evaluation, statistical mean and sigma channel by channel, channel correlations, ...

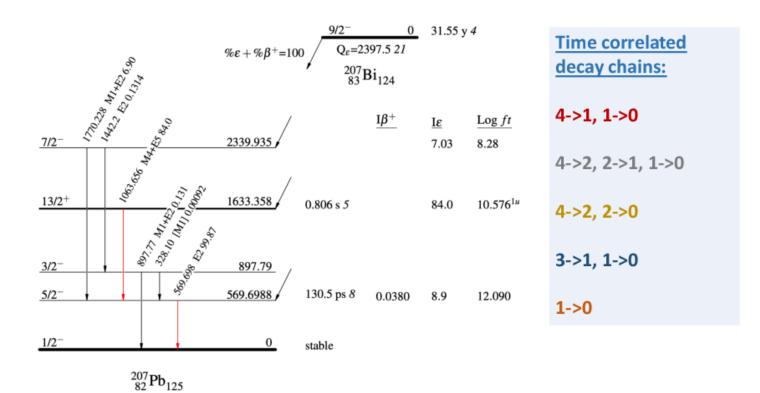
Tuning of readout channels numbering


RAW data (May 2022) python reader contained a channel numbering showing track discontinuities...

Date 20220502 run01tri Event 38 Map st

Tuning of readout channels numbering

We (J. Maneira, F. Barao) worked out corrections to channel mapping...



Date 20220502 run01tri Event 38 Map st

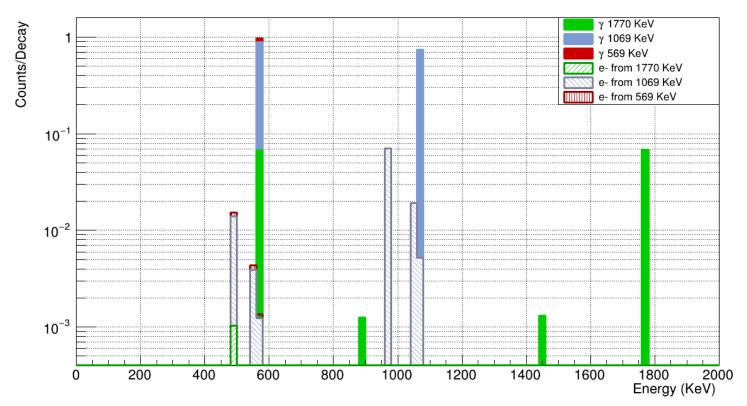
BI207 WG - Sep 21, 2023 (F. Barao)

^{207}Bi source: event generator

We (F. Barao + J. Antunes) developped a source event generator, with the implementation of temporal correlations

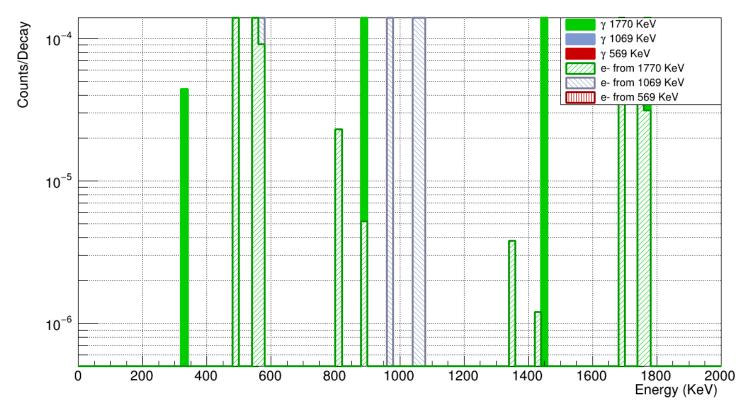
How likely is a K-shell electron from $3 \rightarrow 1$ transition?

electron kin energy: $T_e = \Delta E_{3
ightarrow 1} - U_{K-shell} = 975.66 KeV$


2.3 Gamma Transitions and Internal Conversion Coefficients

	Energy keV	$\mathrm{P}_{\gamma+\mathrm{ce}} \ imes 100$	Multipolarity	$lpha_K$ (10^{-2})	$lpha_L$ (10^{-2})	$lpha_M \ (10^{-2})$	$lpha_T$ (10^{-2})
$egin{aligned} & \gamma_{2,1}(ext{Pb}) \ & \gamma_{1,0}(ext{Pb}) \ & \gamma_{2,0}(ext{Pb}) \ & \gamma_{3,1}(ext{Pb}) \ & \gamma_{4,2}(ext{Pb}) \ & \gamma_{4,1}(ext{Pb}) \end{aligned}$	$\begin{array}{c} 328,11 \ (10) \\ 569,699 \ (2) \\ 897,8 \ (1) \\ 1063,659 \ (3) \\ 1442,2 \ (2) \\ 1770,236 \ (9) \end{array}$	$\begin{array}{c} 0,0044 \; (35) \\ 99,87 \; (4) \\ 0,1313 \; (48) \\ 84,11 \; (31) \\ 0,1319 \; (22) \\ 6,901 \; (26) \end{array}$	$[M1]\\E2\\M1+8,3\%E2\\M4+0,01\%E5\\E2\\M1+0,0025\%E2$	$\begin{array}{c} 1,583 \ (23) \\ 1,82 \ (8) \\ 9,53 \ (23) \\ 0,271 \ (4) \\ 0,342 \ (5) \end{array}$	0,439 (7) 0,304 (12) 2,47 (7) 0,0468 (7) 0,0556 (8)	$\begin{array}{c} 0,1081 \ (16) \\ 0,071 \ (3) \\ 0,591 \ (33) \\ 0,01098 \ (16) \\ 0,01292 \ (19) \end{array}$	$\begin{array}{c} 2,16 \ (3) \\ 2,22 \ (9) \\ 12,78 \ (24) \\ 0,337 \ (5) \\ 0,442 \ (7) \end{array}$

$$egin{aligned} P_e\left(3 \wedge 3
ightarrow 1 \wedge e_{K-shell}
ight) =& P(3 \wedge 3
ightarrow 1) \cdot P(e|3
ightarrow 1) \cdot \ P(K-shell|e,3
ightarrow 1) \simeq 7.11\% \end{aligned}$$


^{207}Bi source: output particles (e, γ)

Bi207 γ and e- (KeV)

^{207}Bi source: output particles (e, γ)

Bi207 γ and e- (KeV)

^{207}Bi source: event MC simulator

Aiming to produce a 3D picture of source decays and liquid-argon interaction

- Data analysis of source events assume energy deposition of γ' s essentially uniform around electron peak position strips
- A detailed simulation of the source events could confirm this and bring additional details
- We started (F.Barao + Summer Internship Physics Degree students), a source event simulation framework.
 Gamma and electron interactions were implemented:

$\circ \gamma$: photoelectric, Compton and pair-production

• *e*: collision losses

Next steps

- Definition of a common data analysis framework
 RAW -> ROOT trees
- Definition of the source positions in protoDUNE
- Towards a source generator + event simulation very detailed? Standalone?
 To be included in LarSoft?