
Monitoring the readout temperature in

the ICARUS TPC

2023 Italian Students Program
Final Report

Giovanni Zago∗

Physics of Data student, Università di Padova, Padova, Italy

Filippo Varanini
INFN Sezione di Padova and Università di Padova, Padova, Italy

Geoff Savage
Fermi National Accelerator Laboratory, Batavia, IL 60510, USA

(Dated: August - September 2023)

Abstract
Being a Liquid Argon Time Projection Chamber (LAr-TPC) detector, ICARUS exploits a series of

three parallel wire planes to measure and collect the ionization charge coming from an event inside

the active volume. The wires are read out by A2795 custom boards, arranged in crates located

on top of the two liquid Argon vessels. Each board is provided with two temperature sensors

that allow temperature monitoring while the experiment is running: this is key in order to ensure

data reliability and maintain hardware in safe conditions. Moreover, temperature-related problems

may force unplanned shutdowns that result in losing valuable time for the experiment to run. In

this work we are discussing the characterization of the ICARUS TPC board temperatures and

the system we implemented in order to monitor them effectively. Among the tools used, Grafana

results in a valid application for both displaying temperature data and sending alerts to the shifters

whenever a pathological situation occurs.

∗ giovanni.zago.2@studenti.unipd.it

1

mailto:giovanni.zago.2@studenti.unipd.it


I. INTRODUCTION

ICAURS [1] is one of the two experiments that constitute the Short Baseline Neutrino (SBN)
Program at Fermilab. The goal of the SBN program is to study the neutrino physics with
a particular focus on neutrino oscillations and Beyond Standard Model searches, like inves-
tigating the existence of the sterile neutrino. In the near future, ICARUS is meant to be
operating together with the Short Baseline Neutrino Near Detector (SBND) experiment by
sharing the same neutrino beam (Booster Neutrino Beam).

ICARUS is a Liquid Argon Time Projection Chamber (LAr-TPC) consisting in two iden-
tical adjacent modules (Fig. 1, (1)), having a central cathode and two anodic planes, each
one made up by 3 layers of 100 µm-diameter, 9 m-long wires separated 3 mm from each other
(Fig. 1, (2)). The first two wire planes provide a nondestructive charge measurement, while
the the third one collects all the ionization charge. There is a total of 53,248 wires inside the
detector that are read out by custom A2795 boards [2], arranged inside crates (Fig. 1, (3))
hosted on flanges on top of each vessel. Crates are numbered from EE01 to WW20 as shown
in Fig. 1 (4). Flanges numbered 01 or 20 actually consist in 3 stacked crates (Fig. 2, left)
so, in this case, in order to specify a single crate, it is necessary to add a trailing T (top),
M (middle), B (bottom) (e.g. to indicate the top crate of the EE01 flange we use EE01T).
A2795 boards embed both the analogue front end and a digital module implemented on a
powerful FPGA. Moreover, the boards have two temperature sensors: one is located near the
preamplifier modules and the other near the regulator, which is the most power-consuming
component inside the board. The information about the temperature of the boards is key
when dealing the gain/noise ratio of the signal coming from the wires. In particular, the
charge preamplifiers are the most sensitive components to temperature variations. In light
of these considerations, in this work we are showcasing the results of the brief study we have
conducted for implementing an efficient system for both characterizing and preserving the
board temperature data. Thus, our goals can be summarized as follows:

• Study the data flow needed for retrieving the desired data. Then, process the data in
order to make it easily usable and accessible.

• Characterize the distribution of the board temperatures in normal conditions by look-
ing at data coming from the past experiment runs. Then, study selected runs showing
pathological behaviour of the board temperatures to identify under which conditions
it is reasonable to fire an alarm to the shifters.

• Use the knowledge gained from the data analysis to implement the alarms on a online
monitoring platform.

In order to fulfill the first goal we had to focus on studying the data flow of the temperature,
i.e. the path needed to get each piece of data from the source - the board temperature sensors
- to the final user, who can eventually perform high-level manipulation (i.e. analysis, plots,
etc.). This part of the work will be discussed in Section II. The second goal consists in using
the polished temperature data to perform an analysis of both normal and pathological runs.
This analysis will be addressed in Section III. The third goal consists in identifying key
features from the data analysis that can be easily used as alarming thresholds/conditions to
embed within a monitoring application like Grafana [3]. This will be addressed in Section
IV. In Section V we provide suggestions about tools one has to use to easily reproduce the
analysis we have performed in one of the previous sections, or to perform further analysis

2



FIG. 1. From top-left to bottom-right : (1): 3D model of ICARUS, in which it is possible to see that

the experiment consists of two vessels that share the same structure, with the cathode in the middle

and two anodic wire planes that extend along the main side of the vessel. (Image taken from [4])

(2): a picture showing a detail of the wire planes. The horizontal wires are the Induction 1 plane,

while the Induction 2 and Collection planes wires are arranged with an angle of +60◦ and −60◦

with respect to the horizontal direction respectively. (Image taken from [4]) (3): a picture showing

a crate, mounted onto a flange, hosting 9 A2795 boards. (4): schema of the crate arrangement on

top of the two vessels. Each green or blue box corresponds to two crates like the one shown in the

previous figure, with the exception of those numbered 1 or 20 that are stacked crates (cf. Fig. 2,

left).

with the goal of expanding or improving the work that has already been done. Finally,
Section VI is left to the conclusions.

3



FIG. 2. Left : flange with 3 stacked crates. Righ: corridor that runs along the main side of the

West module. It is possible to spot on the right the white air conditioning outlets that throw fresh

air directly on the middle of the crate row.

II. RETRIEVING AND PROCESSING THE DATA

A. Starting point of the board temperature data flow

The board temperature sensors are read out by a DAQ software (artdaq [5]) process called
BoardReader, which sends the data to a Graphite [6] back-end, consisting in so-called Car-
bon daemons that push data in a database. However, this database is in theWhisper format,
thus it is fix-sized and consists in a series of archives characterized by a specific resolution
and data retention settings. This means that the data stored inside the Graphite database
is subject to some kind of aggregation that happens over time in order to reduce its gran-
ularity and keep the database size unchanged. This also implies that the data is deleted
from the database once a certain amount of time has elapsed since the data collection. It
is clear that this kind of database is a good tool for monitoring purposes but it is not the
optimal choice when data analysis is required. Indeed, data compression and aggregation
make it impossible to spot the rapid (approximately, over a few minutes) temperature vari-
ations we are interested on. Moreover, the APIs provided by Graphite do not allow an easy
and effortless access to the database in order to perform high-level computations with the
most common tools (Pandas, NumPy, etc.). A possible way to retrieve clean and uncom-
pressed temperature data from the boards may be to modify the artdaq code, so as to send
the metrics to another data consumer that does not perform the manipulation provided
by Graphite. However, this solution would require a great effort, since it would be neces-
sary to setup again the boards in order for them to adapt to the software modifications.
A more immediate solution - which we followed - consists in retrieving the BoardReader

log files which contain all the temperature values and the metadata needed to identify an
unique measurement. The BoardReader log files are shared on the ICARUS Network File
System (NFS) and their paths, for each run, are specified inside the metadata.txt file

4



FIG. 3. Schema of the connections among hardware components and related software processes

inside ICARUS.

located inside the run dedicated directory, which is /daq/run records/RUN ID/. It turns
out that all the BoardReader log files are stored inside sub-directories of /daq/log/, like
/daq/log/icarustpcee20m-icarus-tpc19-11170/. There are 96 BoardReader log files -
one for each board - and each of them contains the path of the corresponding metric log file
where the actual temperature values are reported: all these metric log files are inside the
/daq/log/metrics/ directory (cf. Fig. 3).

B. Data processing scripts

In order to process the raw metric log files we have developed a series of scripts that allow not
only to perform a high-level analysis relying on polished data, but also store the temperature
data inside the ICARUS Postgres online production database (icarus online prd) to en-
sure a long term, granular preservation. The scripts are embedded inside a cronjob that runs
continuously on one of the ICARUS online machines, thus ensuring that the board tempera-
ture data is automatically pushed inside the database without needing an active supervision.
All the scripts are currently stored inside the NFS directory /home/nfs/icarus/gzago/ and
are organized in the following way:

• The script that runs as a cronjob is cronjob.sh. It launches the
tpc readout temperatures.sh script and also creates a cronjob log file inside the
/home/nfs/icarus/gzago/cjob logs/ directory.

• tpc readout temperatures.sh is the main script that embeds all the other scripts.
While running the following scripts are run in sequence:

5



– runs stored.py connects to the database and queries for the RUN ID of the last
run stored inside it. This is important because the cronjob is supposed to start
pushing the board temperature data inside the database only when the con-
sidered run has finished. A coarse but effective way to check that is to see if
the following run has started, i.e. checking for the existence of the directory
/daq/run records/RUN ID+1/.

– find logs v3.sh fetches all the metric log files paths for that run and prints
them inside a text file inside /home/nfs/icarus/gzago/ with the name
metric paths run RUN ID v3.txt.

– logfile parser script v11.py takes every metric log file, parses it and pushes
the data into the database.

– tpc readout temperatures update runs.pymarks the processed run as ”stored”
inside the database. At this point, the cronjob is completed.

A comprehensive schematic outlook of the data flow is reported on Fig. 4.

FIG. 4. Schema of the directories inside the ICARUS NFS. The orange circles and arrows represent

the data flow that starts from collecting the metadata.txt file (step 1) for the selected run,

continues with collecting the BoardReader log files and the metric log files (steps 2 and 3) and ends

with storing the data inside the icarus online prd database (or a SQLite database, if desired).

Black solid lines represent the hierarchical location of directories and files, while black dashed lines

represent references (paths) from a file to another one.

6



C. Table structure and management

The table inside the ICARUS online production database to which the data is fed is
dcs prd.tpc readout temperatures and has the following schema:

Column Type
index integer

run integer

location character varying(10)

number integer

stack integer

timestamp timestamp with time zone

board integer

temp id integer

value real

TABLE I. dcs prd.tpc readout temperatures table schema.

Of course, all these columns are needed to locate each temperature measurement both in
space (cf. Fig. 1, bottom-right) and time. In the following we describe in detail the columns
of the table:

• index: index of the row of the table.

• run: it corresponds to the RUN ID number that univocally identifies a run.

• location: this field specifies which of the four rows the crate that we are considering
belongs to. In accordance with the convention reported in Sec. I, valid values for
location are ee, ew, we, ww.

• number: this field specifies the number of the crate inside the row. Valid values are
integers between 1 and 20.

• stack: it specifies if the considered crate is mounted alone onto the flange (crates with
number from 2 to 19) or belongs to a three-crate flange (crates with number 1 or 20).
Since stack is an integer value, the matching is the following: top crate → 1, middle
crate → 2, bottom crate → 3.

• timestamp: it is the temporal coordinate of the measurement. The format is
YYYY-mm-dd HH:MM:SS-05:00, where the subtracted hours at the end specify the
time zone with respect to the GMT reference.

• board: number of the board inside the crate.

• temp id: it is 1 or 2 according to which temperature sensor the measurement comes
from.

• value: the actual temperature measurement.

The table has also to keep track of the runs that are stored inside the database: this is
implemented by the tpc readout temperatures update runs.py script (cf. Subsec. II B)
that adds a line to the table with the structure reported on Tab. II.

7



index run location number stack timestamp board temp id value

AUTOINCREMENT RUN ID stored 0 0 CURRENT TIMESTAMP 0 0 0

TABLE II. Structure of the rows that mark that the data of a run identified by RUN ID has been

processed and pushed inside the database.

D. Error handling

During the development of the scripts we have considered implementing a basic error-
handling system. Since the data flow involves different elements inside the ICARUS on-
line network, there are multiple gears that can fail while executing the whole script chain.
Moreover, there can be, of course, issues not related to the execution of the code, like a
sudden power outage or a crash of the machines on which the scripts are supposed to run.
The error-handling system is managed by tpc readout temperatures.sh through checks
of the exit codes of the other scripts: each scripts prints inside the cronjob log file its own
error message, which is then reiterated by a message of tpc readout temperatures.sh

itself as a double check. This redundancy has the goal of facilitating the debugging of
the code by having scripts that can be run and that can provide understandable outputs
independently from each other. Regarding the errors, reported in Tab. III, we remark
that if there is an interruption of the script that pushes the data inside the database - i.e.
logfile parser script v11.py -, then, at the following cronjob run, the slice of data al-
ready pushed inside the database will be deleted, in order to start with a clean data push
the second following run after the one in which the crash happened.

Script Error message Source Comment

runs stored.py

Job interrupted because of a failure

in retrieving the last run stored: check

database connection

S/M
S returns exit code 1.

M terminates the script.

Job interrupted because of a generic

error in retrieving the last run stored.
M

M returns any exit code

that is not 0. M terminates

the script.

find logs v3.py

Metadata text file does not exists. S/M

S returns exit code 1.

M marks the run as completed

and terminates the script.

Job interrupted because the run

directory redirects to no tpc

boardreader log files or the

boardreader log files are unavailable.

S/M

S returns exit code 2.

M marks the run as completed

and terminates the script.

Job interrupted because no metric log

file has been found for the current run.
S/M

S returns exit code 3.

M marks the run as completed

and terminates the script.

Job interrupted because of a

generic error occurred while

running find logs v3.sh.

M

S returns any exit code

that is not 0. M marks the run

as completed and

terminates the script.

8



Job interrupted owing to

database connection fail.
S/M

S returns exit code 1.

M terminates the script.

logfile parser

script v11.py

Job interrupted because

run RUN ID data was

already present on the db.

S/M

S returns exit code 2.

M terminates the script.

Data of run RUN ID gets

deleted from the database.

Job interrupted because

run RUN ID existence

verification failed

S/M
S returns exit code 3.

M terminates the script.

Job interrupted because of a

generic error occurred while running

logfile parser script v11.py

S/M

M returns any exit code

that is not 0. M terminates

the script.

TABLE III: Scripts error messages. Inside the Source column, S/M means that the error message

comes first from the script and then is reiterated by the main script M. The indication M instead

means that the error message comes only from the main script. The error message reported on the

table is the one printed on the log file by M, since the one printed by S is equivalent.

FIG. 5. Temperature time series of the crate EE13 during run 10235. It is possible to notice the

highly populated horizontal lines that correspond to integer temperature values.

III. TEMPERATURE ANALYSIS AND CHARACTERIZATION

After acquiring and converting temperature data into a user-friendly format, the subsequent
step involves data analysis. The primary objective is to define the temperature distribution

9



across the boards under normal operating conditions and contrast it with the distribution
observed during abnormal temperature behaviour. For this purpose, we have chosen two
specific runs - 10235 and 10265 (August 2023) - that have been processed and integrated
into the ICARUS production database by exploiting the tools showcased in Sec. II.

A. Run 10235 analysis

After gaining access to the run data, very interesting details can be observed by looking at
the time series visualization of the board temperatures within a given crate. As one can
see in Fig. 5, the temperatures populate the horizontal lines that correspond exactly to
integer values, while displaying some variability during shorter time intervals. This evidence
raised some questions about the nature of the data itself since some fluctuations around an
”equilibrium” temperature value should be expected in principle. Inspecting the registers

FIG. 6. From top-left to bottom-right : (1): temperature histogram of board 2 of crate EE13. (2):

temperature histogram of board 5 of crate EE13. (3): temperature distributions of the boards

inside crate EE13. (4) temperature histogram of crate EE13. All the plots contain Run 10235

data.

10



FIG. 7. Behaviour of the crate temperature distribution of the WE row during Run 10235. It

is possible to notice the U-shaped behaviour due to the fact that the air conditioning outlets are

located on the middle of the vessels main side, providing more cooling effect for the crates that lay

in the middle of a crate row.

of the A2795 boards where the temperature sensors outputs are latched, it is possible to see
that the temperature values are actually stored as 8-bit integers. However, non-integer values
- with an unknown original precision - are present in the dataset, thus making us suppose
that some sort of aggregation occurs at the board or at the BoardReader process level. A
reasonable hypothesis is that the logging time - which corresponds to 15 s - is larger than the
sensor sampling time, and thus if the temperature changes within a logging time window then
the board or the process returns the average of the sampled (integer) temperatures. However,
this aspect is not crucial for our work since we do not need a temperature sensitivity below
1◦C for discriminating normal temperature conditions from abnormal ones: for this reason,
no further investigation was needed. The temperature histograms for a single board inside a
given crate (Fig. 6, (1)) show that the temperature distribution is in most cases bimodal and
highly peaked on a integer value, as already observed. Less often, the distribution displays
a single peak, as in Fig. 6 (2). If we compare the distributions of the board temperatures
of all the boards inside a crate, as shown in Fig. 6 (3), it is possible to notice that they are
heterogeneous, even if most of them share the same modal value and approximately the same
95% percentile interval. This results in crate temperature histograms, like the one in Fig. 6
(4), that display three peaks: the central one due to the contribution of the central peaks of
the set of boards that share the same temperature behaviour, and the marginal ones that
are due to the boards that are likely to be hotter or cooler than the others. However, the
most interesting results come from comparing the crate temperature distributions for the
crates belonging to the same row. Indeed, as one can see in Fig. 7, the distributions follow
a U-shaped behaviour that develops along the row itself. This is due to the fact that the air
conditioning system installed in the Far Detector mezzanine blows the fresh air directly in
the middle of the two lateral corridors, that extend along the two longest sides, thus leaving
the row endpoints much less exposed to the airflow (cf Fig. 1 (4) and Fig. 2, right). This

11



fact allows us to focus more on the temperature of the endpoint stacked crates - especially
the top crates - since, if the temperature rises, they will be affected the most, being the
crates that are on average sensibly hotter than the others.

FIG. 8. Above: temperature time series for crate WE01T during run 10235. Below : temperature

time series for crate WE01T during run 10265. It is worth noticing how differently the temperature

behaves in the two cases in the considered time interval (∼ 35 min), given that the data comes

from similar situations (i.e. the beginning of the run), except for the absence of air conditioning

for Run 10265.

12



B. Run 10265 analysis

Run 10265 has been launched on purpose without mezzanine air conditioning after a power
outage, with the specific intent of simulating a situation in which the air conditioning fails
causing the board temperatures to rise. Since the experiment was shut down for a while, the
electronics was cold and thus the initial temperatures did not reflect the usual ones, which
are of course higher. Nevertheless, this trial has proven valuable in determining the time
interval needed for the temperature to rise by a specific magnitude, potentially breaching a
safety threshold. The temperature time series is reported in Fig. 8, bottom: it is possible to
see that for most boards the temperature takes about 10 minutes to increase by 2◦C. The
effects of the temperature rise are also visible from the histograms, which start to display a
stair-like shape with more than two peaks.

C. Analysis results

From the analysis performed on the data coming from runs 10235 and 10265 we retrieve the
following important results:

1. Each board inside a crate is characterized, most of the times, by a bimodal distribution
with a dominant peak that defines a characteristic temperature.

2. The boards inside the same crate do not share a common distribution, but most of them
display the same modal value and similar 95% percentile intervals. This means that the
temperature distribution of a crate is characterized by a leading modal temperature
with a spread given by the 95% percentile interval that ranges (1÷ 2)◦C.

3. The crate temperature distributions follow a U-shaped behaviour when plotted against
the longitudinal coordinate that spans the row which the crates belong to. This reflects
the fact that the top stacked crates at the endpoints of each row are the hottest ones,
with a characteristic temperatures of (38÷ 39)◦C. Moreover, this means that we have
to monitor those crates first, since they will be the most in danger in anomalous
temperature conditions.

4. In case of an air conditioning failure we observed that the boards are, on average,
subject to a temperature rise of ∼ 2◦C in a timespan of approximately 10 minutes.

IV. GRAFANA ALERTING SYSTEM

The results obtained from the data analysis have proven valuable in order to implement a
temperature alerting system based on Grafana [3], which is an open-source analytics and
interactive visualization web application. Grafana is currently running on the ICARUS
online machines and its data source is the Graphite database that we mentioned earlier
in Sec. II. This means that from Grafana one can access all the metrics that are pushed
by the processes that read out the boards - not only the TPC boards - inside the Graphite
database and build dashboards that help visualize the data or/and simple derived quantities
like averages, maximum/minimum values etc. As we discussed before, the top stacked crates
at the endpoints of each crate row are the hottest ones, so it is reasonable to set up alarms
that focus on those crates, since they will be affected the most by an occurring temperature

13



FIG. 9. Sample image of the Grafana dashboard realized for monitoring the 8 top stacked crates.

It is possible to notice the little hearts that, together with the green and red markers visible on

the bottom-left corner, warn the user if the alarm associated with the panel is firing.

rise. To do so, it is convenient to build a dashboard with panels that collect the temperature
time series for each board inside those crates: in this way, one can pin the 8 targeted crates
panels at the top of the dashboard and keep an eye on the health status of their alarms (see
Fig. 9). Indeed, there are currently 9 alerts set up on Grafana: 8 of them are temperature-
monitoring-related rules associated to the 8 top crates and one is a NoData alert that notifies
run crashes.

A. Temperature alert rules

The temperature alerts are structured in order to go through the following steps every 2
minutes:

1. Fetch the current temperature value for each board and check if the difference with
the temperature value of 10 minutes back in time of the same board is above 1.5 ◦C.

2. Check if during the past 20 minutes the run number has not changed.

3. Fetch the last temperature value for each board and check if it is above 38 ◦C.

Then, an alarm is fired if the statement (1 ∧ 2) ∨ 3 returns True. If the alarm fires then
a Slack notification is sent to the test grafana alerts Slack channel. Conditions 1 and 3
are directly implemented in view of the results obtained from the data analysis. Condition
2 instead, is a caveat for avoiding the alarm to fire when a run is starting, since in that
case it is expected that the temperatures increase, starting of course from a much lower
temperature baseline.

14



B. NoData alert rule

While exploring the tools provided by Grafana, we noticed that a valid condition for im-
plementing conditional actions based on temperature time series values is checking for the
presence of NoData values. A NoData value is retrieved by Grafana whenever the data
source stops pushing data: in our case, this happens when a run stops or crashes suddenly.
For this reason, an alert for checking the presence of NoData values can be helpful to spot
run crashes without the active supervision of the shifter. Moreover, just a single alert is
enough since, if the run crashes, all the components that were included at the beginning of
the run crash at the same time. Thus, we decided to link the NoData alert to the crate
EE01T and set up it in order to check every minute if the last value coming from any board
inside the crate retrieves NoData. A NoData value has to be persistent for at least 5 minutes
in order to avoid firing an alarm if an occasional NoData value occurs. If the alarm fires,
then a Slack notification is sent to the test nodata alerts channel.

V. ACCESSING AND USING THE DATA

In this section we are going to show how one can access the board temperature data inside the
ICARUS production database in order to generate plots, perform further data analysis, etc.
As we mentioned before, the production database relies on the ICARUS online machines,
but it is also replicated on an offline database (ifdb09) to allow users to access it without
passing through the online cluster gateway. A convenient and easy way to access the database
- both online and offline - is working with Jupyter notebooks combined with the JupySQL
[7] library, which allows using line-oriented or cell-oriented magic commands like %sql and
%%sql respectively: the former allows the user to store the output of a SQL queries directly
inside a Pandas Dataframe object while the latter enables the inline visualization of a SQL
query output below the notebook cell. The combination of the two commands allows both to
perform operations on the data and inspect the database according to the needs. Moreover,
the user can set up a connections.ini file inside ∼/.jupysql/ in order to load a default
connection without having to specify the database coordinates inside each notebook file.

VI. CONCLUSIONS

In this work we have showcased our solutions for implementing an efficient and reliable
system for monitoring the TPC readout boards temperature. Through a series of scripts,
temperature data for a specific run is fetched directly from the metric log files - gener-
ated by the BoardReader process - and is pushed inside the ICARUS production database
(icarus online prd) and its offline replica (ifdb09). The data coming from Runs 10235
and 10265 has been analyzed in order to provide a temperature characterization at a board,
crate and row of crates level. Insights coming from the data analysis have been exploited in
order to implement alerts on Grafana necessary to warn the shifters when the board temper-
atures display a pathological behaviour. Also a NoData alert has been implemented in order
to detect run crashes efficiently. Future developments of this work may include improving
the reliability and the organization of the code on one hand and extend the data analysis
by including temperature data coming from the board power supplies on the other. This
will allow studying the correlation between the temperatures in order to search for other

15



valuable insights.

BIBLIOGRAPHY

[1] ICARUS Collaboration. Icarus at the fermilab short-baseline neutrino program – initial oper-

ation, 2023.

[2] CAEN Group. A2795 liquid argon tpc readout board. https://www.caen.it/products/

a2795/. Visited on 3 November 2023.

[3] Grafana Labs. Grafana. https://grafana.com/grafana/. Visited on 3 November 2023.

[4] Krishanu Majumdar and Konstantinos Mavrokoridis. Review of liquid argon detector technolo-

gies in the neutrino sector. Applied Sciences, 11:2455, 03 2021.

[5] Kurt Biery, Eric Flumerfelt, John Freeman, Wesley Ketchum, Gennadiy Lukhanin, Adam

Lyon, Ron Rechenmacher, Ryan Rivera, Lorenzo Uplegger, and Margaret Votava. Flexible and

scalable data-acquisition using the artdaq toolkit, 2018.

[6] Graphite. Graphite project. https://graphiteapp.org/#overview. Visited on 3 November

2023.

[7] Jupysql. https://jupysql.ploomber.io/en/latest/quick-start.html#. Visited on 3

November 2023.

16

https://www.caen.it/products/a2795/
https://www.caen.it/products/a2795/
https://grafana.com/grafana/
https://graphiteapp.org/#overview
https://jupysql.ploomber.io/en/latest/quick-start.html#

	Monitoring the readout temperature inthe ICARUS TPC 2023 Italian Students ProgramFinal Report
	Abstract
	Introduction
	Retrieving and processing the data
	Starting point of the board temperature data flow
	Data processing scripts
	Table structure and management
	Error handling

	Temperature analysis and characterization
	Run 10235 analysis
	Run 10265 analysis
	Analysis results

	Grafana alerting system
	Temperature alert rules
	NoData alert rule

	Accessing and using the data
	Conclusions
	Bibliography
	Bibliography


