

New jet tagging techniques in Vector Boson Scattering (VBS) WV analysis in the semi-leptonic channel with the CMS experiment

Raffaele Delli Gatti, Irene Zoi, Jennifer Ngadiuba Final reports – Summer Trainings 27 September 2023

In partnership with:

Introduction and motivation

- WV(V=Z,W) VBS scattering in the semileptonic channel
- The W boson decaying leptonically and the other boson hadronically
- Two high energetic jets in the forward regions and reduced jet activity in the central region
- Purely **EWK** rare **process** at LO with 6 fermions in the final state and large background contamination

- First evidence of the SM process at the LHC in 2021 [PLB 834 (2022) 137438] using full Run II
- Signal significance of 4.4 standard deviations, to be increased for 5σ observation
- Also Important for BSM searches, such as anomalous Quartic Gauge Couplings

🛠 Fermilab

Jet clustering and tagging

Parton Showering \rightarrow Hadronization \rightarrow Jets of colorless particles

- Jet tagging: identify the particle that initiated a jet
- **Boosted hadronic objects** have a different energy pattern than background jets of comparable invariant mass

CÉRN

N-subjettiness

- Traditional tagging method [JHEP 03 (2011) 015]
- Effective discriminating variable for tagging boosted objects (at high Lorentz boost) and rejecting the background of QCD jets with large invariant mass
- For a large enough boost factor, the decay and fragmentation yields a collimated spray of hadrons which a standard jet algorithm would reconstruct as a single jet
- Jet shape variable (it tells how likely a jet has N subjets): τ_N
- τ_2/τ_1 is an effective discriminating variable to identify two-prong objects like boosted W, Z, and Higgs bosons

CMS,

CERN

ParticleNET

 Improving boosted top, W, Z or Higgs tagging techniques by using machine learning, most notably deep neural networks (DNNs) [PRD 101 (2020) 056019]

CMS

CERN

NANOAOD and Coffea

- NANOAOD: a new event data format by CMS
- **ntuples** with per event information (~1kB per event)
- A factor of 20 smaller than the MINIAOD
- Only **top-level information** and physics objects used in the last steps of the analysis

NANOAOD composition

- Columnar Analysis with Coffea Framework
- The columnar approach has no explicit event loops: 100 times faster
- The fields of data are treated as **awkward arrays:** array of subarrays of arbitrary length
- [[Muon, Muon], [Muon], [], [Muon, ... [Muon]]

Backgrounds contributions

• Main sources

CMS

CERN

W + jets background

W+jets HT-binned samples

•
$$HT = \sum_{i=1}^{N_{jet}} E_T$$

- Variable characterizing the ۲ visible energy in the transverse plane
- **Increased statistic** in ensured at different scales of energy with respect to inclusive LO generation

CMS

CERN

Characterization of the phase space

• Kinematic cuts to define the **electron signal region**

Boosted category

 $\mathbb{Z}_T = \left| -\sum_{i} \bar{p}_{T_i} \right|$

- **One isolated lepton** (*electron*) in the final state, moderate **Missing Transverse Energy**
- **1 FatJet** (anti-kt R = 0.8 jet) from hadronic decay of W boson
- Invariant mass cut on the hadronically decaying W: $70 \text{ GeV} < m_{SD} < 115 \text{ GeV}$
- At least **2 jets** (anti-kt R=0.4) tagged as VBS jets (max invariant mass pair)

Working point of the official analysis

(CERN)

CMS

Efficiency studies for different working points

(CERN)

CMS

Efficiency studies for different working points

(CERN)

Tagging Efficiency

CERN

CMS

N-subjettiness

Efficiency studies for different working points

1.0

0.8

Score > X%

0 6

Jet tagging variables

Efficiency and sensitivity studies

• Background efficiency reduction $\sim 20\%$, sensitivity gain $\sim 11\%$ for a signal efficiency of 78%

(CERN)

CMS

Conclusions

- WV(V = Z, W) Vector Boson Scattering in the semi-leptonic $lvq\bar{q}$ channel
- Coffea Framework to analyze NANOAOD data version 9
- Electron signal region, W + jets background
- Latest developments in ML-based identification algorithms of highly Lorentz boosted heavy particles in CMS
- Compared to N-subjettiness, ParticleNet shows background efficiency reduction $\sim 20\%$ and sensitivity gain $\sim 11\%$, for a signal efficiency of 78%, in the context of the VBS WV analysis
- Further studies: Tagging efficiency and sensitivity also in the muon signal region
 - Z vs QCD score
 - Study of the top background
 - Include full Run II statistics

CMS

(CERN)

Thank you for your attention

CMS

Backup

Outline

- 1. The Compact Muon Solenoid at the Large Hadron Collider
- 2. WV(V = Z, W) Vector Boson Scattering in the semi-leptonic $lvq\bar{q}$ channel
- **3.** Jet tagging techniques
- 4. N-subjettiness and ParticleNet
- 5. NANOAOD and Coffea Framework
- 6. Phase space and distributions
- 7. Efficiency and sensitivity gain

(CERN)

CMS

The Compact Muon Solenoid

- Multi-purpose detector (Cessy, France)
- Cylindrical structure, around the interaction point
- Sub-detectors
- Superconducting solenoid magnet, 3.8 T
- Barrel and endcap regions
- **Particle flow** (PF) algorithm to reconstruct final state particles

CMS,

Monte Carlo generation

PARTON DISTRIBUTION FUNCTIONS (PDFs)

- In hadron collisions at the LHC, the colliding protons presents an internal structure: **valence quarks** interact via **gluons**, from which virtual quark-antiquark pairs arise (**sea quarks**)
- Dynamics of the systems resulting in a distribution of the parton momenta, to be determined by experiments (non-perturbative QCD), such as electron-proton **deep inelastic scattering**

 Each parton carries an unknown fraction ξ of the proton momentum: statistical distribution f(ξ). There are two independents variables:

- Bjorken scaling
$$x \equiv \frac{Q^2}{2p_2 \cdot q}$$
 with $Q^2 = -q^2$, $0 \le x \le 1$

- Inelasticity $y \equiv \frac{p_2 \cdot q}{p_2 \cdot p_1} \approx \frac{Q^2}{x \cdot s}$, $s = (p_1 + p_2)^2 \approx 2p_1 \cdot p_2$, $0 \le y \le 1$
- At high energies $E \gg m_p$, $x \equiv \xi \rightarrow PDF$: $f(x, Q^2)$.

Simulated Monte Carlo sample of the signal

- Process: WlepWhadjj_EW, WlepZhadjj_EW
- Production campaign: Run II 2018
- Collisions: proton-proton
- Center-of-mass energy: 13 TeV
- PDF: NNPDF3.1
- Tuning: CP5 MC Tune
- Format: NANOAODSIMv9
- Generators: Madgraph (perturbative QCD and QED) interfaced with Pythia8 (non-perturbative QCD)

Characterization of the phase space

- Kinematic cuts to define the signal region
- Only one isolated tight lepton (e, μ) in the final state: $p_T^e > 35 \ GeV, p_T^{\mu} > 30 \ GeV$
- Events containing a second loosely identified lepton with $p_T > 10 \text{ GeV}$ are vetoed
- Lepton pseudorapidity : $|\eta^e| < 2.5$, $|\eta^{\mu}| < 2.4$
- **1 FatJet** (anti-kt R = 0.8 jet) from hadronic decay of W boson: $p_T > 200 \text{ GeV}$, $\eta < 4.7$
- At least 2 jets (anti-kt R=0.4) tagged as VBS jets (max invariant mass pair): leading $p_T > 50 \text{ GeV}$, trailing $p_T > 30 \text{ GeV}$, $\eta < 2.4$, $\Delta \eta_{VBS} > 2.5$, $m_{jj}^{VBS} > 500 \text{ GeV}$

Boosted category

Characterization of the phase space

- Reconstructed jet no overlapping with isolated leptons: $\Delta R(j_{AK4}, l) > 0.4, \Delta R(j_{AK8}, l) > 0.8$
- AK4 jets no overlapping with AK8 jets: $\Delta R(j_{AK4}, j_{AK8}) > 0.8$
- Transverse mass of the leptonically decaying W: $m_W^T < 185 \text{ GeV}$ R = 0.8
- Invariant mass of the hadronically decaying W:

```
70 \; GeV < m_W < 115 \; GeV
```

• **bVeto** (no b jets)

Boosted category

Jet clustering and tagging

Parton Showering \rightarrow Hadronization \rightarrow Jets of colorless particles

• Jet algorithm allows to collect iteratively the particles belonging to a jet

- Different types of jets
 - Larger cone: top jet
 - Smaller cone: W jet
 - Much smaller: b jet

CÉRN

Cone radius: $\Delta R =$

- AK8: R = 0.8
- AK4: R = 0.4

Jet tagging: identify the particle that initiated a jet

2m

 p_T

CMS

Boosted objects

 Boosted hadronic objects have a different energy pattern than QCD jets of comparable invariant mass

A jet containing a **boosted W boson** should be composed of **two distinct hard subjets**, with invariant mass of 80 GeV

A **Boosted QCD jet** of 80 GeV originates from a hard parton, it gains mass through **large angle soft splittings**

Background contributions

Main sources

- W + jets

- Top: ttbar, single top, tW, tZ

Other contributions

- QCD-VV
- Non-prompt: data-driven estimation with fakable object technique
- VBF-V: single V boson EWK production
- Drell-Yan
- ggWW, VVV, Vgamma: very small contribution

CMS,

NANOAOD data format

- A new event data format designed by the CMS collaboration
- Satisfy the needs of a large fraction of physics analyses (at least 50%) with a per event size of order 1 kB.
- More than a factor of 20 smaller than the MINIAOD format
- Only top level information and physics objects typically used in the last steps of the analysis
- Typical format of user ntuples, containing per event information

Coffea Framework

- Columnar Analysis with Coffea Framework
- While the traditional way of analyzing data in HEP involves the event loop, the columnar approach has no explicit loops: **100 times faster**
- The fields of data are treated as arrays and analysis is done by way of numpy-like array operations.
- Coffea builds upon awkward arrays with a variety of features that better enable us to do analyses
- Array of subarrays, which have arbitrary length (they can even be empty)!
- [[Muon, Muon], [], [Muon], [], [Muon, ... [Muon]]

