Analysis of Rock Events from NuMI in the Icarus Detector at Fermilab

Marco Caporale under supervision of Doctor Minerba Betancourt

Fermi National Accelerator Laboratory

27 September 2023

M. Caporale

Rock μ Analysis

M. Caporale

관계적

Short-Baseline Neutrino (SBN) Program 🛛 🛟 Fermilab

Goal \rightarrow solve neutrino oscillation anomalies (sterile neutrino?)

- 3 LArTPC detectors (100 m, 500 m, 600 m)
 - Increase ν (flavour) identification
 - $\bullet\,$ Reduction of systematics to % scale
- ν from BNB (SBN) and off-axis NuMI (Icarus)

- 3.6x3.9x19.9 m³ LArTPC (Active volume≈470 t)
- First used in the CNGS (@ LNGS), moved to CERN for refurbishment.
 From 2017 @FNAL. Data taking started in 2021.
- SBN goals required moving detector to surface → Relevant CR bkg (11 kHz)
 → Introduction of Cosmic Rays Tagging (CRT)

‡ Fermilab

Focus of the activity:

- Looking at μ tracks in the detector
- Trying to separate cosmogenic and beam-induced background

5 / 3<u>2</u>

‡ Fermilab

Working with 3 datasets

All MC

Includes Beam interaction and Cosmics

Rock MC

Includes Beam interaction and Cosmics and Misc. Rock

• Data from Run1

Investigating cuts for optimal selection of events.

Looking at geometrical distributions of the tracks.

M. Caporale

09/27/2023

‡ Fermilab

On top of that MCs include information about the origin of the track

- ν events \rightarrow tracks originating from neutrino events
- μ events \rightarrow non-neutrino initiated tracks

Attention

- MC tag on plots indicates Monte Carlo samples
- Data vs MC comparisons are POT normalised

Rock Events Features

Looking at interactions outside of the detector $\rightarrow \nu$ interacting with the nuclei of the rock between the beam production point and the detector.

Expected events \rightarrow need to be outside of the Fiducial Volume (FV)

Reconstructed vertex of rock $\boldsymbol{\mu}$

- Pink \rightarrow TPC boundaries
- White \rightarrow FV

-Track end

Extra requirement:

End of track containment.

Less information for exiting tracks (Momentum?)

End of track within 10 cm of TPC borders.

🛟 Fermilab

Beam induced muons arrive in time with the beam. It is possible to reduce the cosmic muons by selecting a proper time window (-0.2 \rightarrow 9.8 µs) with respect to the beam spill.

- Not too big of an impact on statistics
- $\bullet\,$ Very helpful in reducing cosmics $\to\,$ out of time wrt to the spill

Cutting at -0.1 ${\rightarrow} 9.7\,\mu s$

PMT Flash Time (2)

Flash time for each Monte Carlo with respect to data (Area normalised)

Y direction of the longest track in a slice (typically a muon) gives information about the nature the event.

- (...slc->nuid.crlongtrkdiry)
 - Vertical and down-going
 - \rightarrow Most likely a cosmic
 - Horizontal
 - \rightarrow Most likely beam-induced

Cut selected at -0.2

Monte Carlo for the All events dataset. The cut selects a high purity beam-induced sample.

🛟 Fermilab

Y Direction of Longest Track (2)

Area normalised comparison of data and Monte Carlo distributions of Data vs Monte Carlo Y direction distribution. (Confirms trend observed by David Wells)

13 / 32

🛟 Fermilab

Longest Track Lenght

After all other cuts many cosmics can still be removed.

Beam-induced events are more energetic, resulting in longer muon tracks.

Cutting at 20 cm \rightarrow Effect of cut can be seen from second bin (Plot already includes track direction and flash constraints)

🛟 Fermilab

Variables

- Vertex Positions
- $\bullet\,$ Energy Loss (& Residual Range of Tracks) $\rightarrow\,$ Sanity Check
- Track Lenght
- $\cos \theta_{NuMI} \rightarrow track$ angle wrt NuMI beam (off axis)
- $\phi \rightarrow {\rm azimuthal}$ angle of the track wrt z axis
- $\cos \theta \rightarrow \text{track}$ angle wrt z axis

All the plots in the following pages have been produced with these cuts

- Track vertex outside the fiducial volume
- Track end inside the detector Exclude from 10 cm inside the detector border
- Track direction constraint
- Track length above 20 cm
- Spill on time with the NuMI beam spill

‡ Fermilab

Inclusion of systematic effects on the Monte Carlo samples

- NuMI Flux
- GENIE (has 2 components MultiSim and MultiSigma) (see backup slides for list of components)
- GEANT4 (only for Rock Monte Carlo)

Systematic contributions

- defined as a deviation from the reference spectrum (reference)
- summed in quadrature (more careful analysis in the future \rightarrow correlation effects)
- simplified to have all effects at 1 σ
 (when effects are well understood add weight with entity of deviation)

XY Vertices

M. Caporale

09/27/2023

215

XZ Vertices

Vertex Position AIIMC

19/32

215

YZ Vertices

🛟 Fermilab

Vertex Position AIIMC

20 / 32

215

‡ Fermilab

dE/dx vs Residual Range

M. Caporale

Rock μ Analysis

09/27/2023

M. Caporale

09/27/2023

 $\cos \theta_{NuMI}$ (1)

M. Caporale

Rock μ Analysis

09/27/2023

 $\cos \theta_{NuMI}$ (2)

 ϕ (1)

M. Caporale

09/27/2023

28 / 32

→

 $\cos\theta$ (1)

M. Caporale

09/27/2023

 $\cos\theta$ (2)

- A selection for Rock events has been developed
- General agreement between data and MC prediction (still some tensions need to be addressed)
- A internal report for the working group has been written

What to do in the future?

- Add in-time cosmic prediction (Could it fix disagreements in the plots?)
- Add detector systematic effects

M. Caporale

Rock μ Analysis

09/27/2023

32 / 32

- GENIEReWeight_ICARUS_v2_multisigma_RPA_CCQE
- GENIEReWeight_ICARUS_v2_multisigma_CoulombCCQE
- GENIEReWeight_ICARUS_v2_multisigma_NormCCMEC
- GENIEReWeight_ICARUS_v2_multisigma_NormNCMEC
- GENIEReWeight_ICARUS_v2_multisigma_NonRESBGvpCC1pi
- GENIEReWeight_ICARUS_v2_multisigma_NonRESBGvpCC2pi
- GENIEReWeight_ICARUS_v2_multisigma_NonRESBGvpNC1pi
- GENIEReWeight_ICARUS_v2_multisigma_NonRESBGvpNC2pi
- GENIEReWeight_ICARUS_v2_multisigma_NonRESBGvnCC1pi
- $\bullet \ GENIEReWeight_ICARUS_v2_multisigma_NonRESBGvnCC2pi$
- GENIEReWeight_ICARUS_v2_multisigma_NonRESBGvnNC1pi
- GENIEReWeight_ICARUS_v2_multisigma_NonRESBGvnNC2pi

Fermilab

- GENIEReWeight_ICARUS_v2_multisigma_NonRESBGvbarpCC1pi
- GENIEReWeight_ICARUS_v2_multisigma_NonRESBGvbarpCC2pi
- GENIEReWeight_ICARUS_v2_multisigma_NonRESBGvbarpNC1pi
- GENIEReWeight_ICARUS_v2_multisigma_NonRESBGvbarpNC2pi
- GENIEReWeight_ICARUS_v2_multisigma_NonRESBGvbarnCC1pi
- $\bullet \ GENIEReWeight_ICARUS_v2_multisigma_NonRESBGvbarnCC2pi$
- GENIEReWeight_ICARUS_v2_multisigma_NonRESBGvbarnNC1pi
- GENIEReWeight_ICARUS_v2_multisigma_NonRESBGvbarnNC2pi
- GENIEReWeight_ICARUS_v2_multisigma_NormCCCOH
- GENIEReWeight_ICARUS_v2_multisigma_NormNCCOH

🛟 Fermilab

- GENIEReWeight_ICARUS_v2_multisim_ZExpAVariationResponse
- GENIEReWeight_ICARUS_v2_multisim_NCELVariationResponse
- GENIEReWeight_ICARUS_v2_multisim_CCRESVariationResponse
- GENIEReWeight_ICARUS_v2_multisim_NCRESVariationResponse
- $\bullet \ GENIEReWeight_ICARUS_v2_multisim_DISBYVariationResponse$
- GENIEReWeight_ICARUS_v2_multisim_FSI_pi_VariationResponse
- GENIEReWeight_ICARUS_v2_multisim_FSI_N_VariationResponse

(Rock MC only)

- reinteractions_piminus_Geant4
- reinteractions_piplus_Geant4
- reinteractions_proton_Geant4

