

Exploiting a high-rate trigger strategy at LHC: test of lepton flavor universality in $B \rightarrow \ell\ell K$

Georgios Karathanasis, on behalf of the CMS Collaboration

12/01/2023

Outline

Introduction

- Theoretical aspects
- R_K definition and previous results
- LHC and the CMS detector

B Parking triggering strategy

- Motivation
- Implementation
- Purity on B candidates
- B Parking usage

Main analysis

- B candidate reconstruction
- Selection of B → μμK candidates
- Low p_T electron reconstruction
- Selection of B → eeK candidates
- B $\rightarrow \mu\mu X$ mass fits
- B → eeX mass fits
- Simultaneous mass fit B $\rightarrow \mu\mu K$ in q² bins
- Systematic unc. and corrections

Results

- dBF(B → $\mu\mu$ K)/dq² measurement
- BF(B → μμK) and R_K in 1.1 < m(μμ)² < 6 GeV² measurements

Test of lepton flavor universality in $B^{\pm} \to K^{\pm} \ell^+ \ell^-$ decays

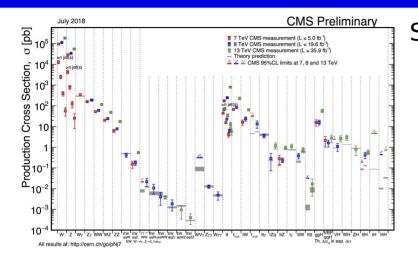
The CMS Collaboration

Abstract

A test of lepton flavor universality in $B^\pm \to K^\pm \ell^+ \ell^-$ decays, where ℓ is a muon or an electron, as well as a measurement of differential and integrated branching fractions of a nonresonant $B^\pm \to K^\pm \mu^+ \mu^-$ decay with the CMS experiment at the LHC are presented. The analysis is made possible by a dedicated data set of proton-proton collisions at $\sqrt{s}=13$ TeV recorded in 2018, using a special high-rate data stream designed for collecting about 10 billion unbiased b hadron decays. The ratio of the branching fractions $\mathcal{B}(B^\pm \to K^\pm \mu^+ \mu^-)$ to $\mathcal{B}(B^\pm \to K^\pm e^+ e^-)$ is measured as a double ratio R(K) of these decays to the respective branching fractions of the $B^\pm \to J/\psi K^\pm$ with $J/\psi \to \mu^+ \mu^-$ and $e^+ e^-$ decays, which allow for significant cancellatives. The ratio R(K) is measured in a range $1.1 < q^2 < 6.0$ GeV², where q is the invariant mass of the lepton pair, and is found to be $R(K) = 0.78^{+0.47}_{-0.23}$, in agreement with the standard model expectation within one standard deviation. This measurement is limited by the statistical precision of the electron channel. The integrated branching fraction in the same q^2 range of $\mathcal{B}(B^\pm \to K^\pm \mu^+ \mu^-) = (12.42 \pm 0.68) \times 10^{-8}$ is consistent with the present world-average value and has a comparable precision.

All plots and figures can be found here:

BPH 22-005



Introduction

G. Karathanasis

Standard Model

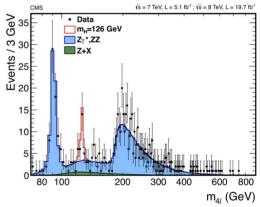
Standard Model (SM):

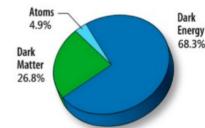
- Encapsulates everything we know about Nature
- Successfully predicts processes in $\sigma\,[10^{\text{-}3}$ $10^{\text{11}}]$ pb
- Discovery of Higgs Boson in 2012 led to extensive search of its properties → (So far) no deviations from SM
- Yet, regarded as an "effective theory"

Not predicted/answered by SM

Hierarchy problem

- New Physics at ~ TeV scale or extremely fine-tuned Higgs mass?


Dark matter problem

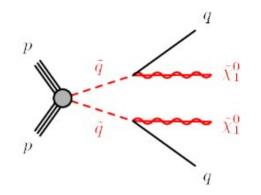

- Astrophysical observations indicate 5 times larger mass than visible

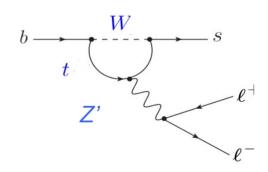
Many more that what can include:

- Neutrino oscillations
- Matter/antimatter asymmetry

-...

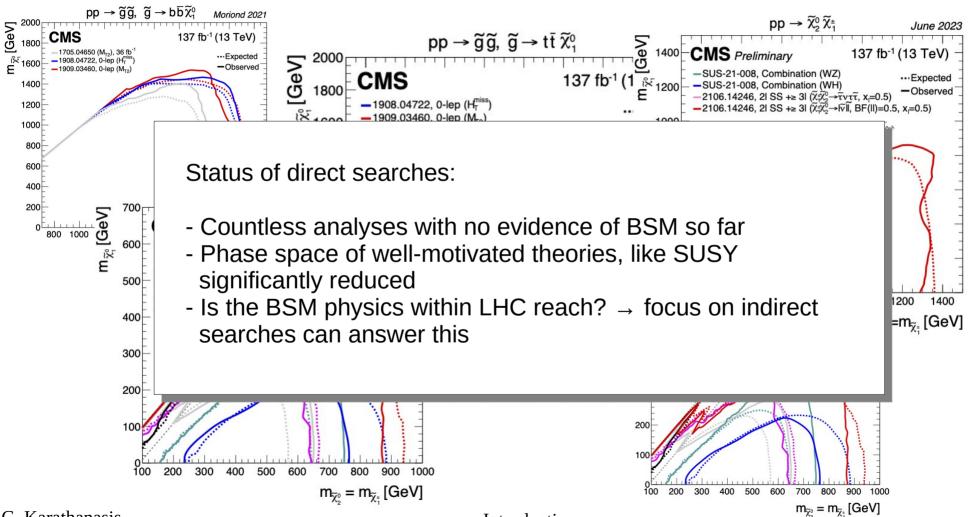
Searching for Beyond SM phenomena




Direct searches:

- New particles are directly produced
- Targets specific Beyond SM (BSM) theory
- (Usually) on-mass shell particles → large signal expected
- Bounded by the center of mass of LHC collisions
- Variety of signatures

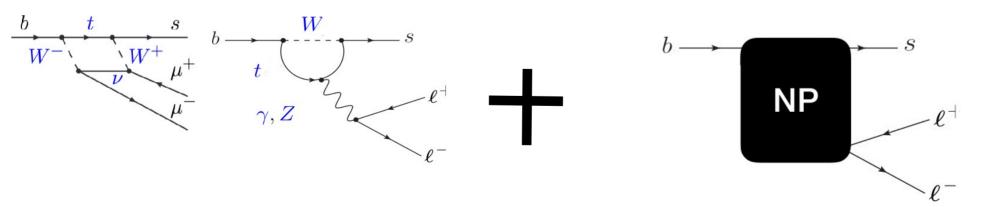
Indirect searches:


- New particles are produced only in loops
- Effects can be explained by many BSM models
- Not bounded by the center of mass of LHC
- Small number of events expected
- Focusing on rare SM signatures where small BSM contributions can be visible.

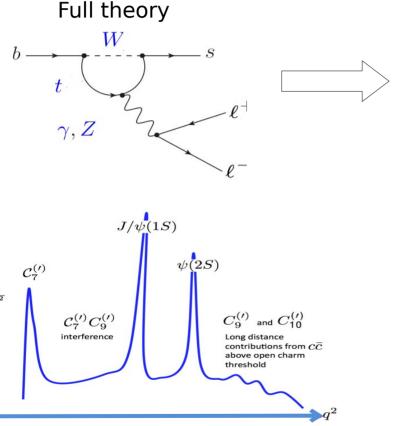
Status of Beyond SM direct searches

G. Karathanasis

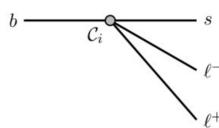
Introduction


Interest in b $\rightarrow s\ell\ell$ transitions

- So far no BSM physics has been observed from direct searches
- Rare decays: powerful tool for indirect searches


- $b \rightarrow s\ell\ell$ transition in the SM:
 - Prohibited at tree level (FCNC)
 - Via loop diagrams (eg penguin, box)
 - Very rare → Weak signals in BSM might be visible

- Quantities affected by the BSM:
 - Lepton flavour universality (LFU)
 - Branching ratios (BR)
 - Differential BR
 - Angular distributions



Describing $b \rightarrow s\ell\ell$ with Effective Theory

Effective theory

Prediction accuracy

 $b \rightarrow s \ell\ell$ described in model independent effective theory

$$\mathcal{H}_{eff} = \frac{-4 G_F}{\sqrt{2}} V_{tb} V_{ts}^* \frac{e^2}{16 \pi^2} \sum_{i} C_i O_i$$
Wilson coefficients

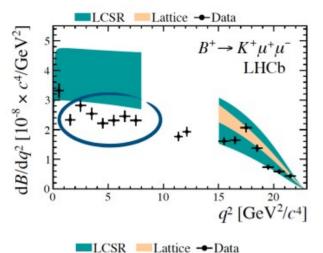
Limitations on SM predictions:

- BF measurements affected by:
 - -- form factors and c-c loops
- Angular distributions affected by:
 - -- only c-c loops
- LFU ratios affected by:
 - -- neither form factors nor c-c loops

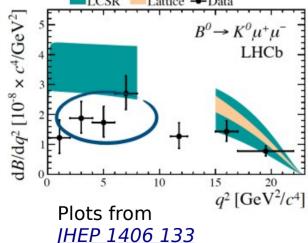
Different $q^2 = m(\ell, \ell)^2 \rightarrow \text{different } C_i \text{ probed}$

R_K definition

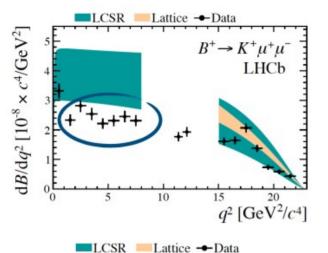
LFU test with minimal theoretical uncertainty via the B $\rightarrow \mu\mu K$ to B \rightarrow eeK ratio, R_K:

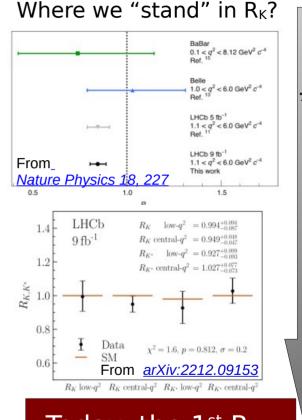

$$R_K = \frac{BF(B \to \mu \mu K)}{BF(B \to e e K)}$$

To reduce experimental uncertainties \rightarrow divide both numerator and denominator with BF(B \rightarrow J/ ψ K). R_K becomes:


$$R_{K} = \frac{BF(B \rightarrow \mu \mu K)}{BF(B \rightarrow J/\psi K, J/\psi \rightarrow \mu \mu)} / \frac{BF(B \rightarrow e e K)}{BF(B \rightarrow J/\psi K, J/\psi \rightarrow e e)}$$

B Physics anomalies




- Deviations of measurements and SM expectations in dBF/dq²:
 - -- Seen in several channels
 - -- Hadronic form factors have large uncertainties
 - -- BSM effect or common issue of SM expectation?
- Furthermore several angular measurements show ~3σ deviations from SM expectation
- Intriguing pattern

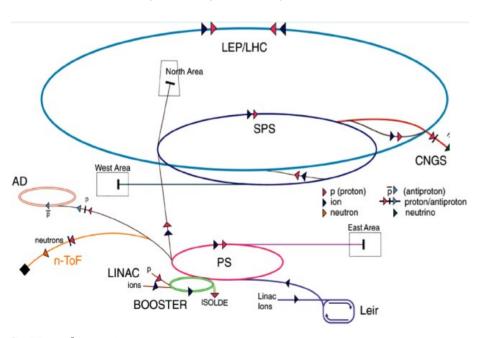
- Deviations of measurements and SM expectations in dBF/dq²:
 - -- Seen in several channels
 - -- Hadronic form factors have large uncertainties
 - -- BSM effect or common issue of SM expectation?
- Furthermore several angular measurements show ~3σ deviations from SM expectation
- Intriguing pattern

Today: the 1st R_K result from CMS using Run 2 data

Plots from

| HEP 1406 133| $B^0 \rightarrow K^0 \mu^+ \mu^-$ LHCb $B^0 \rightarrow K^0 \mu^+ \mu^-$ LHCb $q^2 [\text{GeV}^2/c^4]$

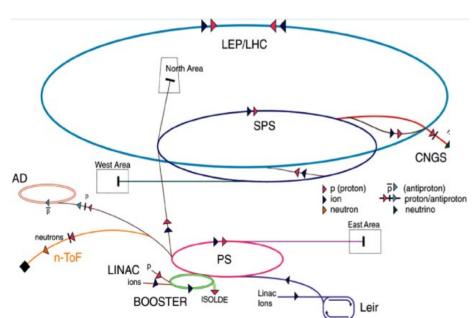
G. Karathanasis

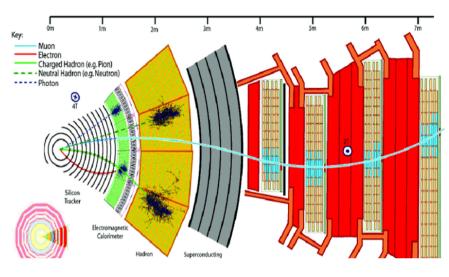

Introduction

The Large Hadron Collider

Large Hadron Collider

- Most powerful accelerator
- 27-kilometer ring
- Located in Switzerland & France
- 2 proton beams colliding at 13 TeV
- 4 Interaction points: ATLAS, CMS, LHCb, Alice


The Compact Muon Solenoid



Large Hadron Collider

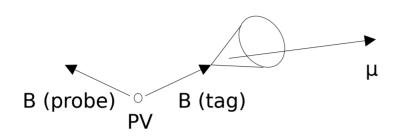
- Most powerful accelerator
- 27-kilometer ring
- Located in Switzerland & France
- 2 proton beams colliding at 13 TeV
- 4 Interaction points:

ATLAS, CMS, LHCb, Alice

Compact Muon Solenoid

- Located near Cessy
- Magnet generates 3.8 T
- General purpose experiment
- Detectors (from inside out):
 Tracker, electromagnetic calorimeter, hadronic calorimeter, muon chambers

More information in the **TDR**



B - Parking strategy

G. Karathanasis

Motivation

Event collection:

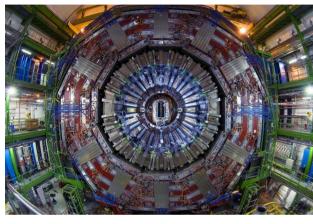
- Use one b-hadron to trigger, while the other decays freely
- BF(b $\rightarrow \mu X$) ~20%: large fraction in a very clean object
- Use μ-based paths to trigger
- This technique is known as Tag-and-Probe
- Tag = triggering B

Back-of-the-envelop estimation: $N = f_B * BF (B \rightarrow eeK) * R_{HLT} * P_{HLT} * T$

Where:

- N = Produced events
- BF (B → eeK) ~ O(10⁻⁷)
- f_B = B hadron type fraction (0.4)
- R_{HLT} = Trigger rate (~2 kHz)
- P_{HLT} = Trigger purity (~75%)
- -T = HLT active time

Aim for N ~300 events

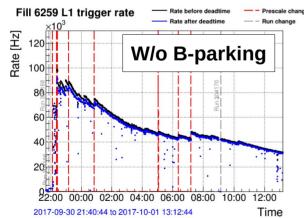

 $=> T = 1.11 \times 10^6 \text{ sec}$

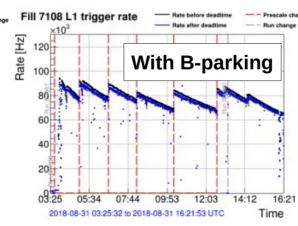
To collect 300 eeK events ~ 10×10⁹ B events needed

Implementation

Collisions (p - p) at 40 MHz

L1 Trigger

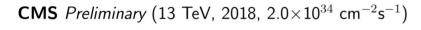

- Single-μ L1 seeds
- η restricted, soft $p_{\text{\tiny T}}$
- Purity in B decays ~30%
- Constant L1 rate

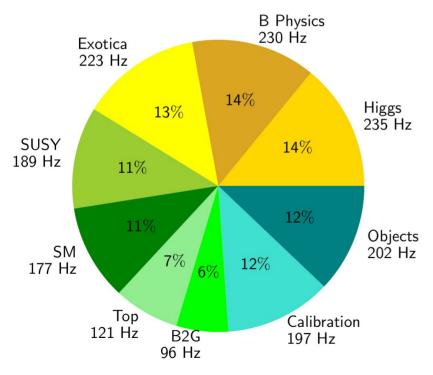

HLT Trigger

- L1 seeds as inputs
- Refined p_T and d_{xy} cut
- Saved in single copy

DAO

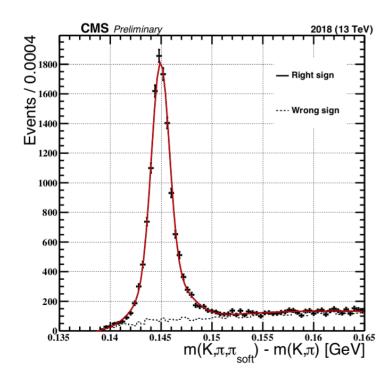
- Stored on tape until computing resources available
- Long delay in reconstruction; procedure known as "Parking"




- As luminosity decreases lower p_T seeds enabled
- Tune/optimize paths during data-taking
- Collected during 2018

2018 Rate breakdown

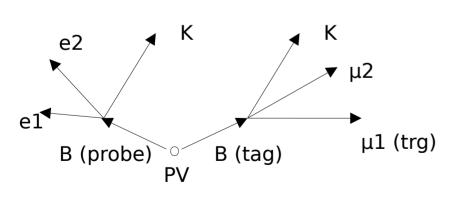
"standard CMS menu" HLT rate

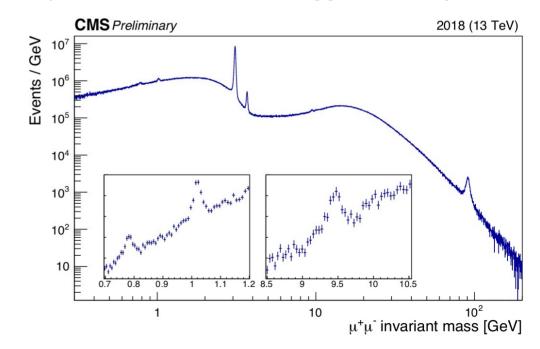

- In 2018 all B Physics rate was coming from muonbased triggers
- With 230 Hz, the number of probe B → eeK produced is <30
- Adding acceptance & reconstruction factors, negligible number of events expected
- Using a parking strategy was the only way to measure $R_{\mbox{\tiny K}}$

Purity in B candidates

18

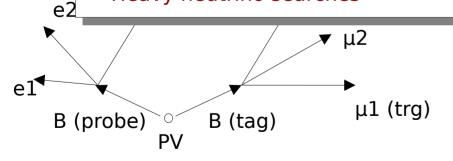
- D^o built by combining tracks of opposite charges, that pass some selection
- D* built by combining D⁰ candidates with a soft track
- Measure P_b for the HLT Mu9 IP6: μ is required to pass this trigger
- Right Sign, RS: $Q(\mu) \neq Q(\pi_s)$ [Signal]; Wrong Sign, WS: $Q(\mu) = Q(\pi_s)$ [BKG]
- Plotting $M(K,\pi,\pi_s)$ - $M(K,\pi)$ creates a distinctive peak

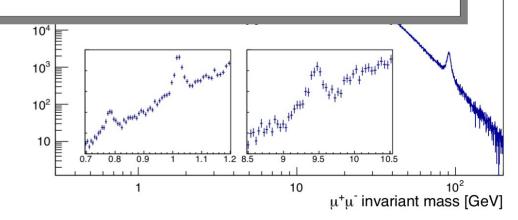

More information in DP 19-043


Usage of B Parking sample

- In R_K analysis both $B \to \mu \mu K$ and $B \to eeK$ needed
- B $\rightarrow \mu\mu K$ comes from the "tag B" to improve statistics
- B → eeK from the "probe B"

- B Parking sample: powerful tool used by many analyses
- Single displaced muon trigger: used in Exotic and B physics with muon(s) in final state
- "probe B" used for non-triggered decays

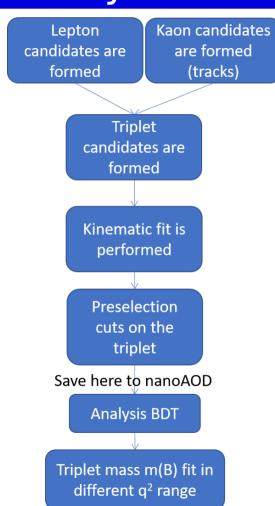

Usage of B Parking sample



TeV)

- In R_K analysis both $B \rightarrow \mu \mu K$ and B → eeK needed
- B $\rightarrow \mu\mu K$ comes from the "tag B" to impro

- B Parking sample: powerful tool used by many analyses
- Single displaced muon trigger: used in Exotic and B physics with muon(s) in final state
- B Parking sample is used for more analysis than R_K :
 - R(D)/R(D*) measurement
 - CP violation studies
 - Exotic searches
 - Rare B decays
 - Heavy neutrino searches



Main analysis

G. Karathanasis

Analysis overview

A practical problem: Running on 10^{10} events requires a lot of storage, time and computing power

Analysis framework strategies:

- 1) Apply preselection cuts as early as possible in the chain
- 2) Move time consuming processes at the end
- 3) Modify the precision of ntuple variables to reduce size

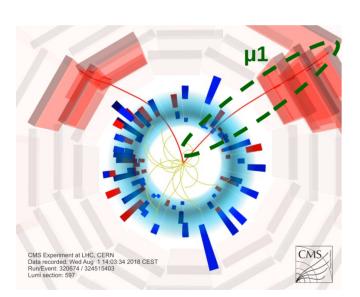
Preselection cuts:

- Optimized using using adaptive grid search (back up)

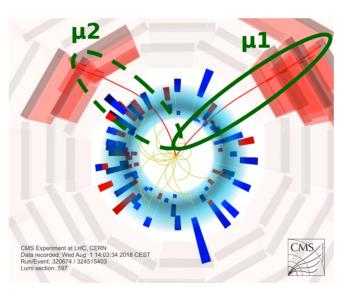
Selection:

- Based on Boosted Decision Trees (BDT) with XGBoost

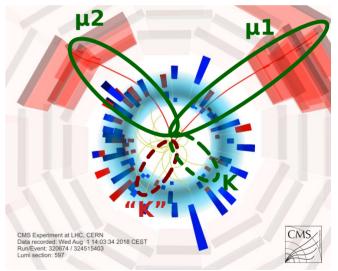
Fits:


- All mass fits are unbinned max likelihood fits, using RooFit

Reconstructing B candidates



All events are collected by the single μ parking triggers

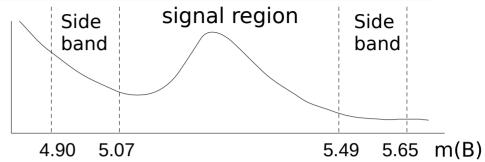

Step 1: Find the triggering muon

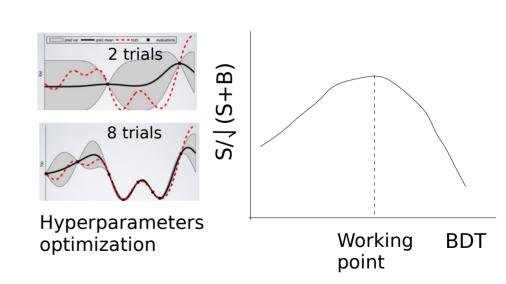
Step 2: Select μ close in z to triggering $\mu \rightarrow$ dilepton candidates with m<5GeV

Step 3: Select tracks close to dilepton; assign m(K) and kinematicaly fit to built B candidates

- Events can have more than 1 candidate

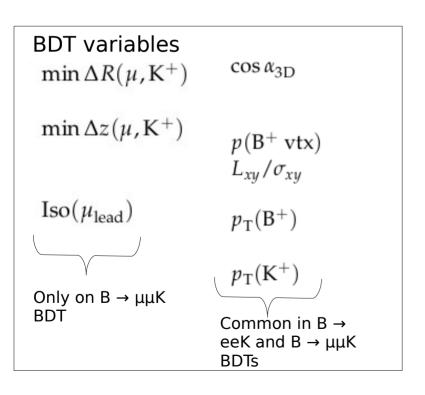
BDT optimization strategies

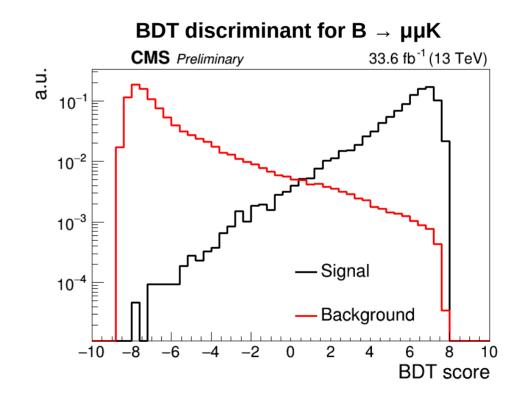

CMS


- Main selection based on BDT
 - -- 8-fold cross-validation structure
 - -- Data sidebands as background
 - -- Simulated (MC) B $\rightarrow \ell\ell$ K as signal

- -- Input variables
- -- Configuration options (hyperparameters)
- -- Tested for "mass sculpting"
- -- Working point defined as the value that Maximizes the S/√(S+B) of the signal

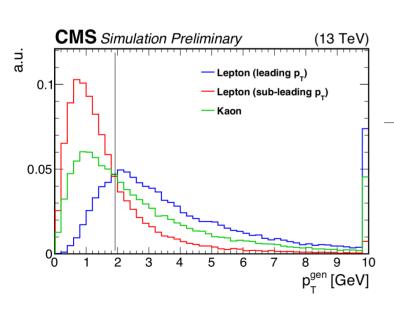
Same techniques/methods but different BDTs for µµK and eeK states



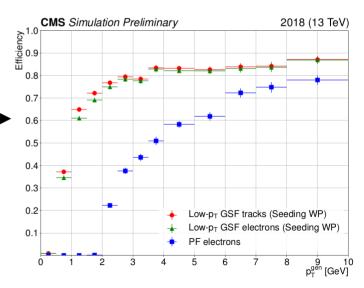

Selection of B $\rightarrow \mu\mu$ K candidates

Object selection:

- Muons: Medium ID, $p_T(\mu 1) > 9$ GeV, $p_T(\mu 2) > 2$ GeV and $|\eta| < 2.4$
- Tracks: "High purity" ID, $p_T > 1$ GeV and $|\eta| < 2.4$



Low p_T electrons


Motivation:

- Most B produce e with p_T<2GeV
- Cannot be reconstructed with the "standard" algo (particle flow, PF)

Low p_T e:

- More information in DP 19-043
- Tracker seeded
- e candidates identified MVA methods
- Gain in efficiency for $p_T(e) < 5$
- **Introducing more background** (including from B decays).

Created a new

type of electron

the "low p_T" (LP)

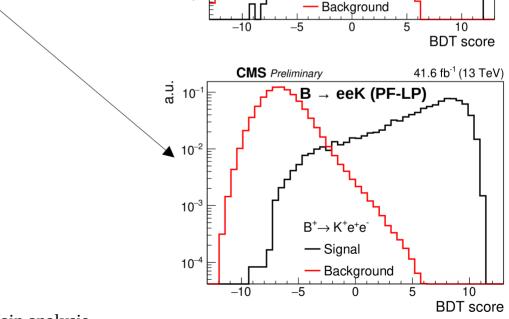
Selection of B → eeK candidates

41.6 fb⁻¹ (13 TeV)

Object selection:

- Electrons: Candidates with two PF electrons (PF PF) or one PF and one LP (PF LP)
- Tracks: Same as in B → μμK case

2 BDTs trained:


one for PF - PF candidates and one for PF - LP candidates

Variables exclusive to $B \rightarrow eeK BDT$

$$p_{\rm T}({\rm e}_{1,2})m_{{\rm K}^+{\rm e}^+{\rm e}^-}$$
 ID(${\rm e}_{1,2}$)
$$I_{\Delta R=0.4}^{\rm rel}({\rm e}_1/{\rm e}_2/{\rm K}^+)$$

 $|d_{3D}(K^+, e^+e^-)|/\sigma_{|d_{3D}(K^+, e^+e^-)|}$

 $\begin{array}{l} \Delta R(\mathbf{e}^+, \mathbf{e}^-) \\ \Delta R(\mathbf{e}_{1,2}, \mathbf{K}^+) \\ \frac{|\mathbf{p}(\mathbf{e}^+\mathbf{e}^-) \times \mathbf{r}| - |\mathbf{p}(\mathbf{K}^+) \times \mathbf{r}|}{|\mathbf{p}(\mathbf{e}^+\mathbf{e}^-) \times \mathbf{r}| + |\mathbf{p}(\mathbf{K}^+) \times \mathbf{r}|} \end{array}$

CMS Preliminary

 10^{-2}

 10^{-3}

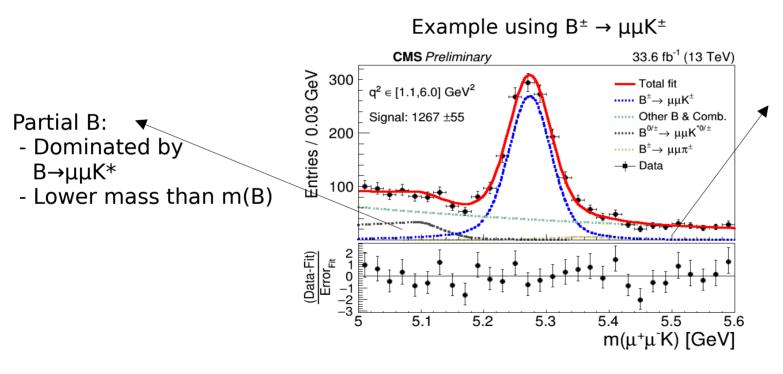
 10^{-4}

B → eeK (PF-PF)

 $B^+ \rightarrow K^+ e^+ e^-$

— Signal

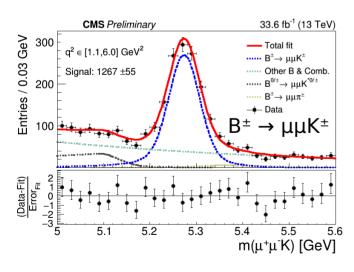
G. Karathanasis

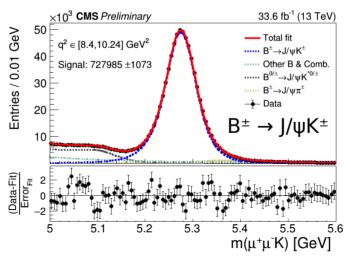

Main analysis

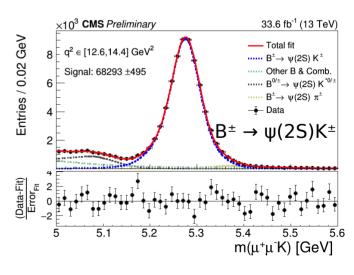
Background composition

The backgrounds are divided in two categories based on the type:

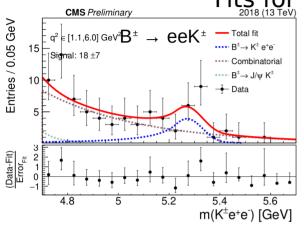
- Partial B: Candidates from partial reconstruction of B meson decays with many tracks
- Combinatorial: Candidates created with 1 or more objects from pile up/other B

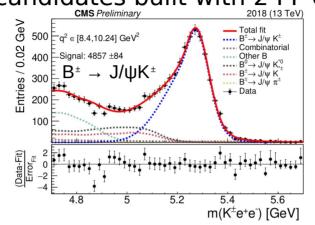

Combinatorial:

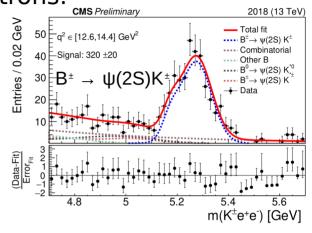

- Only background
 In signal region
- Dominates the high mass sideband
- Studied using B candidates with same sign leptons


$B \rightarrow \mu\mu X$ mass fits

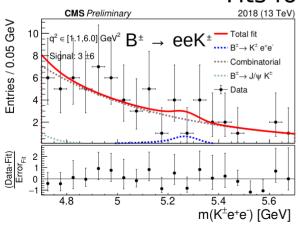
- Analytical functions used for fitting signal and backgrounds
- Signal:
 - -- Combination of Gaussians and Double-Sided Crystal Ball functions
- -Backgrounds:
 - -- B \rightarrow K* $\ell\ell$: partial reconstruction of the dominant 4 body decay
 - -- Other B: Any other B decay (sequential or J/ψX)
 - -- Combinatorial: random combinations of objects from B decays
 - -- J/ψK leakage (relevant only in eeK)

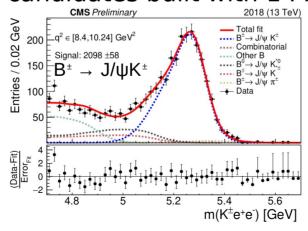


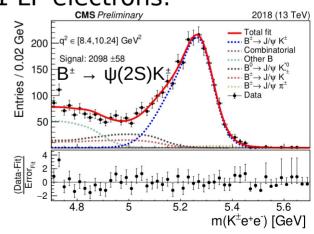

B → eeX mass fits



30





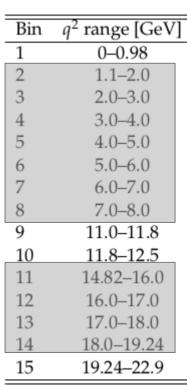


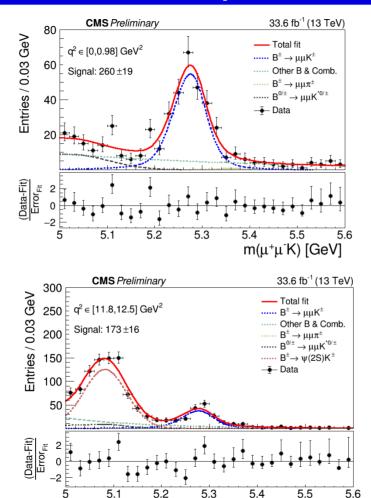
Fits for B candidates built with 1 PF & 1 LP electrons:

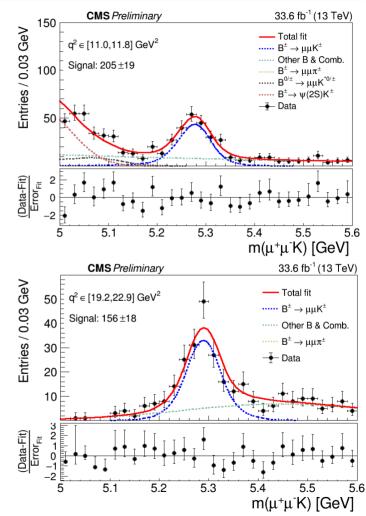
G. Karathanasis

Main analysis

$B \rightarrow \mu\mu K$ mass fits in q² bins


- Since adequate statistics available: differential measurement, dBF/dq2
- Use the same selection and code and instead for a single fit, do a simultaneous fit in q² bins
- Result to be compared with several theoretical predictions


Bin	q ² range [GeV]
1	0-0.98
2	1.1 - 2.0
3	2.0-3.0
4	3.0-4.0
5	4.0 - 5.0
6	5.0-6.0
7	6.0-7.0
8	7.0-8.0
9	11.0-11.8
10	11.8-12.5
11	14.82-16.0
12	16.0-17.0
13	17.0-18.0
14	18.0 - 19.24
15	19.24-22.9


B $\rightarrow \mu\mu K$ mass fits in q² bins

Rest of the fits in back up

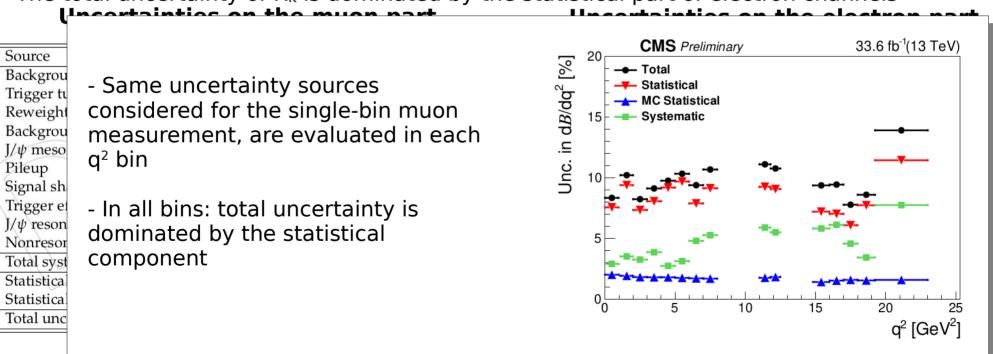
 $m(\mu^+\mu^-K)$ [GeV] $m(\mu^+\mu^-K)$ [GeV] G. Karathanasis Main analysis 32

Systematic uncertainties and corrections

- Corrections on MC to account for known disagreements with data:
 - -- Trigger response, lepton reconstruction/identification, B p_T spectrum, BDT response
- Systematics are treated as independent between the muon and electron part of R_K
- The total uncertainty of R_K is dominated by the statistical part of electron channels

Uncertainties on the muon part

Source Impact on the R(K) ratio [%] Background description, low-q² bin 1.75 Trigger turn-on 1.30 Reweighting in $p_{\rm T}$ and rapidity 0.86 Background description, J/ψ CR 0.64 J/ψ meson radiative tail description 0.48Pileup 0.38 Signal shape description 0.32 Trigger efficiency 0.16 J/ψ resonance shape description 0.08 Nonresonant contribution to the J/ ψ CR 0.07 Total systematic uncertainty 2.5 Statistical uncertainty in MC samples 1.7 Statistical uncertainty 7.5 Total uncertainty 8.1


Uncertainties on the electron part

Source	Impacto	n the $R(K)$ ratio [%]
Source	PF-PF	PF-LP
Signal and background description	5	5
J/ψ event leakage to the low- q^2 bin	4	9
BDT efficiency stability	2	5
BDT cross validation	2	3
Trigger efficiency	1	4
BDT data/simulation difference	1	2
J/ψ meson radiative tail description	1	1
Total systematic uncertainty	7	13
Statistical and total uncertainty	40	200

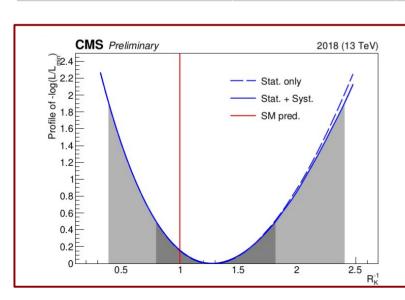
Systematic uncertainties and corrections

- Corrections on MC to account for known disagreements with data:
 - -- Trigger response, lepton reconstruction/identification, B p_T spectrum, BDT response
- Systematics are treated as independent between the muon and electron part of R_K
- The total uncertainty of R_K is dominated by the statistical part of electron channels

Results

G. Karathanasis

BF(B $\rightarrow \mu\mu K$) and R_K in the low q²



BF(B $\rightarrow \mu\mu$ K) in full low-q² range (1.1 < q² < 6.0 GeV²):

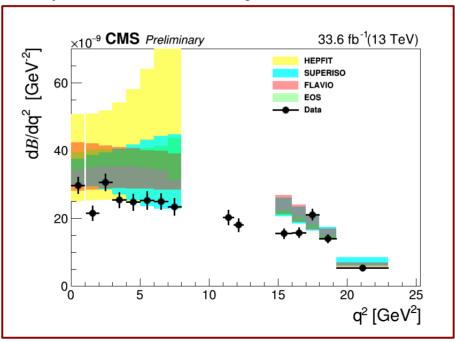
BF (B[±]
$$\rightarrow$$
 K[±] μ ⁺ μ ⁻) , 1.1 < q² < 6.0 GeV²
= (1.242 ± 0.054 (stat) ± 0.011 (MC stat) ± 0.040 (syst)) × 10⁻⁷

Can be compared with the various theoretical predictions

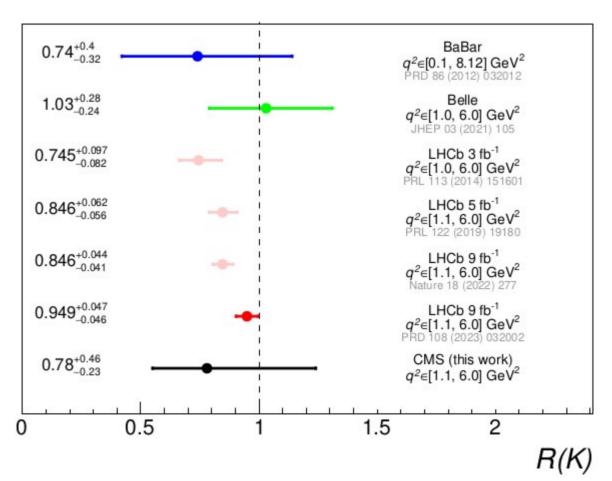
Package	EOS	Flavio	HEP fit	SuperIso
Prediction [×10 ⁻⁷]	1.89 ±0.13	1.71 ±0.27	1.98 ±0.73	1.65 ±0.34

Central value and confidence range by minimizing the Likelihood fit function of R_{κ}^{-1} :

$$R_K = 0.78^{+0.46}_{-0.23}$$
 (stat) $^{+0.09}_{-0.05}$ (syst)

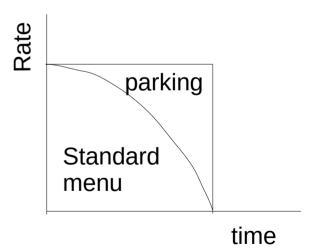

Precision dominated by the low stats of $B \rightarrow eeK$

Measurement of differential BF(B $\rightarrow \mu\mu K$)


- For differential BR measurement, a fit is performed in all q² bins at the same time
- Compare measurement with the theoretical predictions in each q² bin

Measurement of dBR/dq² and comparison with theory

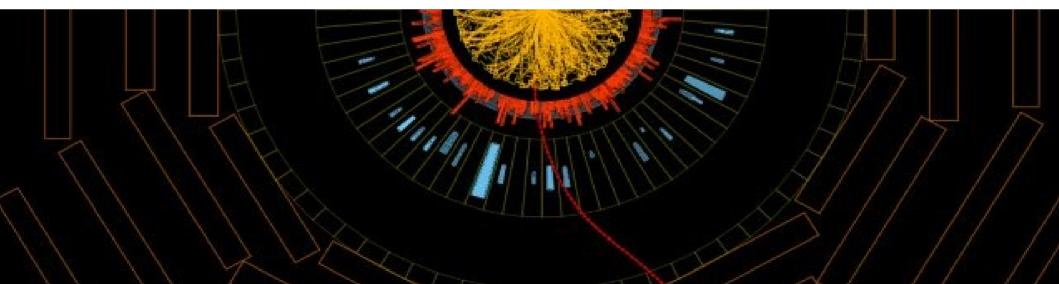
CMS update to the R_K measurement



A look into the (near) future

- Lessons learned from Run 2 (up to 2018):
 - -- Muon channel: high statistics → comparable precision to world average
 - -- Electron channel: low statistics → "penalty" for using the "probe B"

- In Run 3 (after 2022) we improved the strategy:
 - -- Two parking samples used (one for muons/ one for electrons)
 - -- Same strategy of exploiting the unused L1/HLT rate:
 - -- Gradually enabling looser triggers
 - -- Dielectron parking is based on:
 - -- Topological variables
 - -- p_⊤ thresholds
 - -- Sophisticated online ID
 - -- Expecting large increase in stats
 - -- Analysis is ongoing; first look quite promising...


Summary

CMS

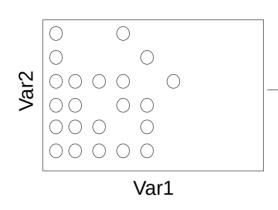
- CMS pursuing a very ambitious B Physics program
- First RK result using 2018 data demonstrates the robustness and adaptability of the CMS detector, trigger and software
 - -- We improved triggering strategy in Run 3
 - -- Expecting large increase in statistics of B → eeK

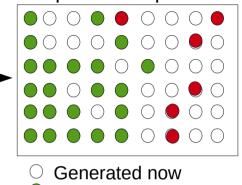
Public analysis summary is posted here: <u>BPH 22-005</u>

Stay tuned for more!

Back up

G. Karathanasis

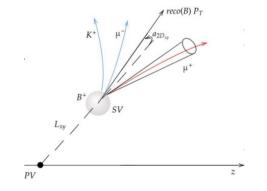

Preselection


Adaptive grid search:

- Every variable is a dimension
- Scan variables (grid points)
- Take into account previous searches before generating a point
- Find optimal, according to some metric(s)
- Computing resources reduced by ~75% wrt to standard grid search

Step1: Generate points

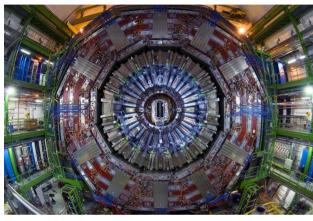
Step2: use previous result to skip useless points


- Previous generation
- Excluded

Preselection for μμΚ:

- $p_T(B) > 3$ GeV - Δz(trg μ , track/ μ 2) < 1.0 cm
- $p_T(\text{track}) > 1 \text{ GeV}$
- $L_{xy}/\sigma > 1$
- $-\cos{(\alpha)} > 0.90$
- Prob > 10^{-5}
- $m(K,\mu) > 2 \text{ GeV} [\text{ anti-D}^{\circ}]$

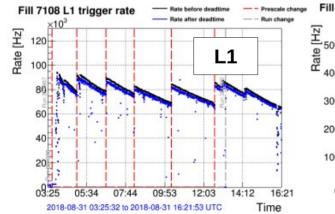
Preselection for eeK:

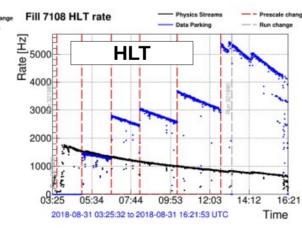

- $\Delta z(\text{trg }\mu, \text{track/e}) < 1.0 \text{ cm}$
- $-p_{T}(e2) > 1.0 \text{ GeV}$
- $\cos (\alpha) > 0.95$ - $\text{Prob} > 10^{-5}$
- $m(K,e) > 2 \text{ GeV } [\text{ anti-D}^{\circ}]$
- $d_{3d} < 0.06$
- ID (e1) > -2- ID (e2) > 0

Implementation

Collisions (p - p) at 40 MHz

L1 Trigger

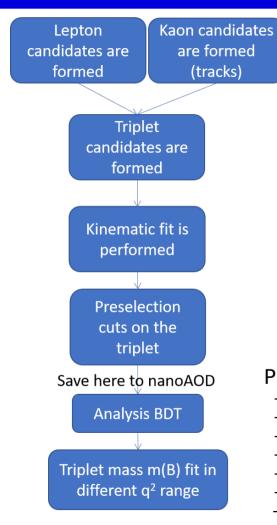

- Single-μ L1 seeds
- η restricted, soft p_T
- Purity in B decays~30%
- Constant L1 rate



- L1 seeds as inputs
- Refined p_T and d_{xy} cut
- Saved in single copy

DAQ

- Stored on tape until computing resources available
- Long delay in reconstruction; procedure known as "Parking"



- As luminosity decreases lower p_T seeds enabled
- Tune/optimize paths during data-taking
- Collected during 2018

B candidate reconstruction

A practical problem: Running on 10^{10} events needs a lot of storage, time and computing power

Code strategies:

- 1) Apply cuts as quickly as possible in every step of the reconstruction
- 2) Move time consuming processes to the end of the chain

Algorithm:

- Select leptons of opposite sign and create the common vertex
- Combine with a track (Kaon mass assigned)
- Kinematic Fit to a common vertex

Preselection:

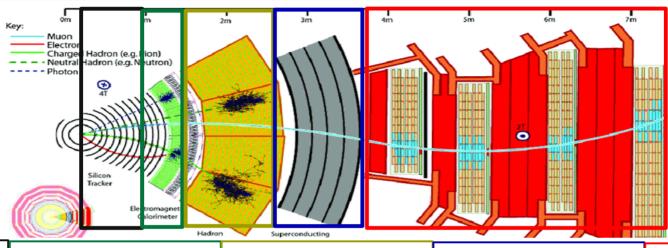
- Adaptive grid search approach used
- Cut values are different for µµK and eeK

Preselection for µµK:

- p_T(B) > 3 GeV
- Δz (trg μ , track/ μ 2) < 1.0 cm
- $-p_{T}(track) > 1 \text{ GeV}$
- $-L_{xy}/\sigma > 1$
- $-\cos(\alpha) > 0.90$ - Prob > 10^{-5}
- $m(K,\mu) > 2 \text{ GeV } [\text{ anti-D}^{0}]$

Preselection for eeK:

- $\Delta z(\text{trg }\mu,\,\text{track/e}) < 1.0\,\text{cm}$
- $-p_T(e2) > 1.0 \text{ GeV}$
- $-\cos(\alpha) > 0.95$
- Prob > 10^{-5}
- m(K,e) > 2 GeV [anti-D⁰]
- $d_{3d} < 0.06$
- ID (e1) > -2
- ID (e2) > 0


Yields

Bin	q ² range [GeV]	Branching fraction $[10^{-8}]$
1	0-0.98	2.98 ± 0.25
2	1.1 - 2.0	2.15 ± 0.22
3	2.0-3.0	3.07 ± 0.25
4	3.0 - 4.0	2.54 ± 0.23
5	4.0 - 5.0	2.48 ± 0.24
6	5.0-6.0	2.53 ± 0.26
7	6.0-7.0	2.51 ± 0.23
8	7.0-8.0	2.35 ± 0.25
9	11.0-11.8	2.03 ± 0.22
10	11.8-12.5	1.80 ± 0.19
11	14.82-16.0	1.55 ± 0.14
12	16.0-17.0	1.58 ± 0.15
13	17.0-18.0	2.11 ± 0.16
14	18.0-19.24	1.40 ± 0.12
15	19.24-22.9	0.53 ± 0.07

The Compact Muon Solenoid detector

More information in the <u>TDR</u>

Tracker:

- Pixels in the core
- Silicon strips around
- In 2017 an extra inner layer added
- Total 14(15) layers in Barrel(endcaps)
- Reconstructs the trajectory of charged particles
- Excellent measurement of position

ECAL:

- Homogeneous calorimiter
- Lead tungstate (PbWO) scintillator
- 61,200 crystals in barrel
- 1,700 crystals in endcap
- Measures the energy of e and γ
- Very good energy resolution

HCAL:

- Heterogeneous calorimiter
- Interleaved heavy material with scintillator layers
- Measures the energy of hadrons
- Indirect
 measurement of
 non-interacting
 particles (like v)

Magnet:

- Central device
- Large solenoid magnet
- Field up to 4T
- Bends charged particles to measure their momentum

Muon:

- Position exploits the penetration of muons
- Very clean signatures
- Gaseous detectors of three types
- Drift tubes (barrel),
 CSC (endcap),
 RPC
 (barrel+endcap)

BDT leplepK common variables

$\cos \alpha_{3D}$	Cosine of the angle between the momentum
	vector of the B+ candidate and the vector con-
	necting the PV and SV
$p(B^+ \text{ vtx})$	Probability of the SV kinematic fit
$p(\mathrm{B^+\ vtx}) \ L_{xy}/\sigma_{xy}$	Significance of the SV displacement in the
	transverse plane with respect to the PV
$p_{\mathrm{T}}(\mathrm{B}^+)$	Transverse momentum of the B ⁺ candidate; in
	the electron channel it is divided by $m_{K^+e^+e^-}$
$p_{\mathrm{T}}(\mathrm{K}^+)$	Transverse momentum of the K ⁺ candidate; in
, - , ,	the electron channel it is divided by $m_{\mathrm{K^+e^+e^-}}$

BDT µµK exclusive variables

$\min \Delta R($	$\mu, K^+)$
------------------	-------------

 $\min \Delta z(\mu, K^+)$

 $Iso(\mu_{lead})$

 $\Delta R = \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2}$ distance between the K⁺ candidate and the closest muon

 Δz distance between the points of origin of the

K⁺ candidate and the closest muon along the beam axis direction

PF isolation for the $p_{\rm T}$ -leading muon, defined as a scalar $p_{\rm T}$ sum all PF candidates, excluding

the muon itself, within $\Delta R < 0.4$ of the muon and corrected for PU

BDT eeK exclusive variables

$$p_{T}(e_{1,2})m_{K^{+}e^{+}e^{-}}$$

$$\Delta z(e_{1,2}, K^{+})$$

$$|d_{3D}(K^{+}, e^{+}e^{-})|/\sigma_{|d_{3D}(K^{+}, e^{+}e^{-})|}$$

$$\Delta R(e^{+}, e^{-})$$

$$\Delta R(e_{1,2}, K^{+})$$

$$|p(e^{+}e^{-})\times r|-|p(K^{+})\times r|$$

$$|p(e^{+}e^{-})\times r|+|p(K^{+})\times r|$$

$$I_{\Delta R=0.4}^{\rm rel}({\rm e}_1/{\rm e}_2/{\rm K}^+)$$

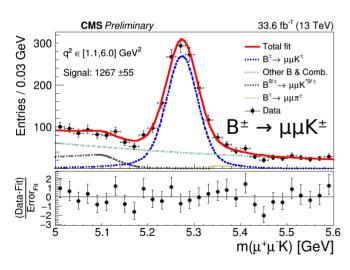
Transverse momenta of the two electron candidates, divided by the invariant mass of the B⁺ candidate

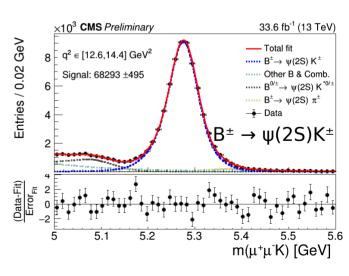
Longitudinal distance between the points of origin of each electron and the kaon Kaon 3D impact parameter significance with respect to the dielectron vertex ΔR between the two electrons ΔR between each electron and the kaon

Asymmetry of the momentum of the dielectron system and that of the K^+ momentum with respect to the B^+ candidate trajectory, where ${\bf r}$ is a unit vector connecting the PV and SV Electron ID BDT score for each of the two elec-

Relative track-based isolation of e_1 , e_2 , and K^+ candidates, respectively, defined as a scalar p_T sum of all additional tracks in a $\Delta R < 0.4$ cone around the candidate, divided by the candi-

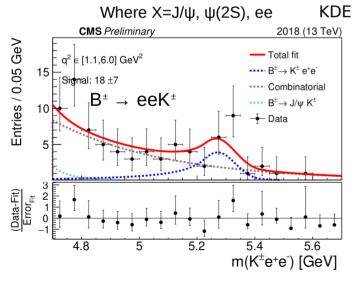
trons

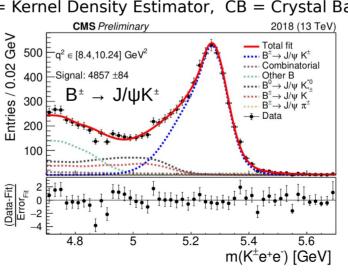

$B \rightarrow \mu\mu X$ mass fits

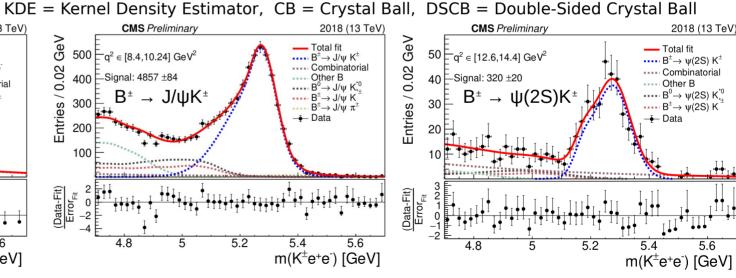

Functions used for each fit component per decay

	$B^{\pm} \rightarrow \mu \mu K^{\pm}$	$B^{\pm} \rightarrow J/\psi K^{\pm}$	$B^{\pm} \rightarrow \psi(2S)K^{\pm}$
Signal	DSCB + Gaussian	Sum of 3 Gaussians	DSCB + Gaussian
Comb & other B	Exponential	Exponential	Exponential
$B^{\pm} \rightarrow K^{\star 0/\pm}X$	DSCB	DSCB + Exponential	DSCB + Exponential
$B^{\pm} \to \pi^{\pm} X$	DSCB	DSCB	DSCB

Where X=J/ ψ , ψ (2S), $\mu\mu$ DSCB = Double-Sided Crystal Ball



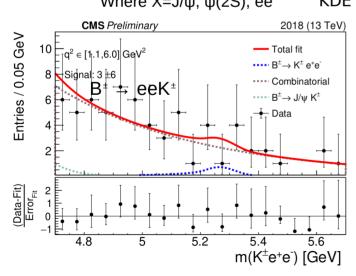

$B \rightarrow eeX mass fits (PF - PF)$

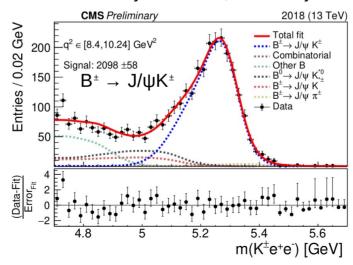


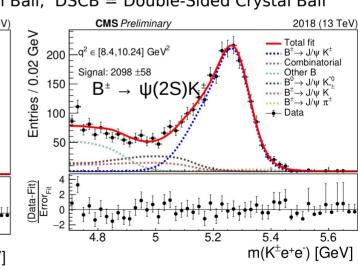
Functions used for each fit component for 2 PF electron channels

	B [±] → eeK [±]	$B^{\pm} \rightarrow J/\psi K^{\pm}$	$B^{\pm} \rightarrow \psi(2S)K^{\pm}$
Signal	DSCB	CB + Gaussian	CB + Gaussian
Combinatorial/Other B	Exponential / -	Exponential / KDE	Exponential / KDE
$B^{\pm} \rightarrow K^{*0/\pm}X$	-	KDE template	KDE template
$B^{\pm} \to \pi^{\pm} X$	-	СВ	-
$B^{\scriptscriptstyle \pm} \to J/\psi K^{\scriptscriptstyle \pm}$	KDE template	-	-

$B \rightarrow eeX mass fits (PF - LP)$




Functions used for each fit component for PF - LP electron channels


	B [±] → eeK [±]	$B^{\pm} \rightarrow J/\psi K^{\pm}$	$B^{\pm} \rightarrow \psi(2S)K^{\pm}$
Signal	DSCB	CB + Gaussian	CB + Gaussian
Combinatorial/Other B	Exponential / -	Exponential / KDE	Exponential / KDE
$B^{\pm} \ \rightarrow \ K^{\star 0/\pm} X$	-	KDE template	KDE template
$B^{\pm} \to \pi^{\pm} X$	-	СВ	-
$B^{\pm} \rightarrow J/\psi K^{\pm}$	KDE template	-	-

Where $X=J/\psi$, $\psi(2S)$, ee

KDE = Kernel Density Estimator, CB = Crystal Ball, DSCB = Double-Sided Crystal Ball

B $\rightarrow \mu\mu K$ mass fits in q² bins

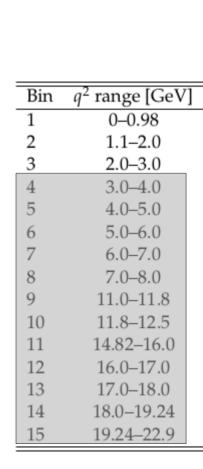
33.6 fb⁻¹ (13 TeV)

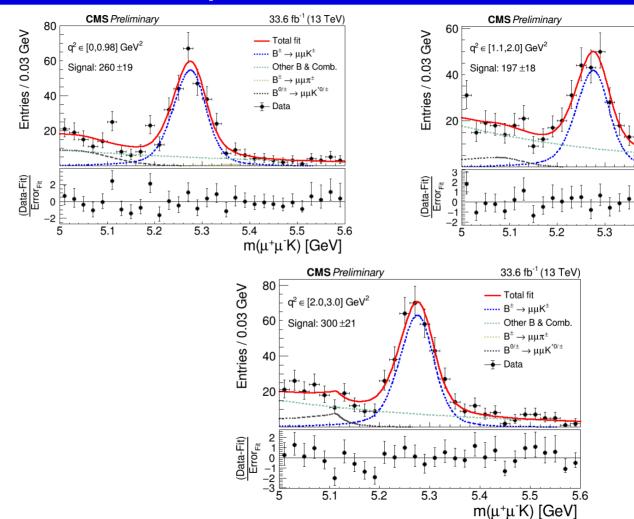
5.6

- Total fit

---- Data

 $\cdots B^{\pm} \rightarrow \mu \mu K^{\pm}$


····· Other B & Comb.


 $B^{\pm} \rightarrow \mu \mu \pi^{\pm}$

 $\cdots B^{0/\pm} \rightarrow \mu \mu K^{*0/\pm}$

5.5

m(μ+μ-K) [GeV]

G. Karathanasis Main analysis 53

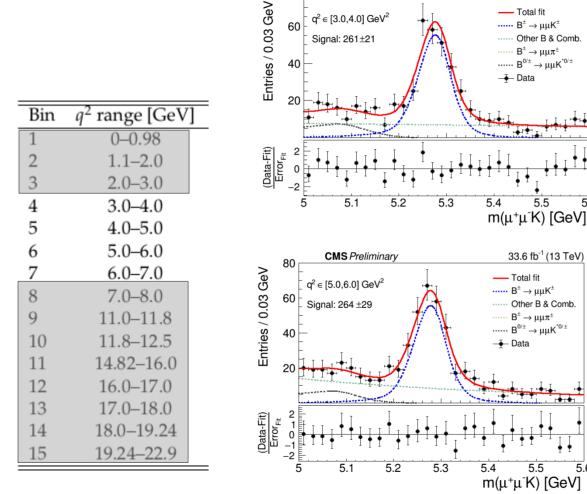
$B \rightarrow \mu\mu K$ mass fits in q² bins

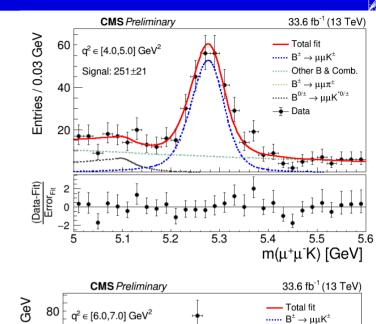
CMS Preliminary

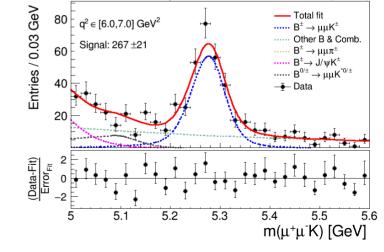
33.6 fb⁻¹ (13 TeV)

5.5

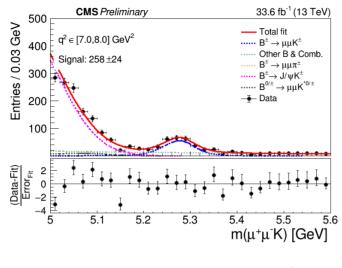
33.6 fb⁻¹ (13 TeV)

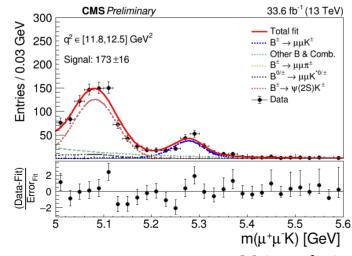

5.5

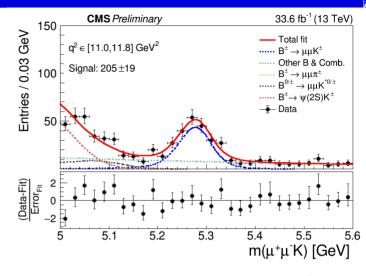

Main analysis

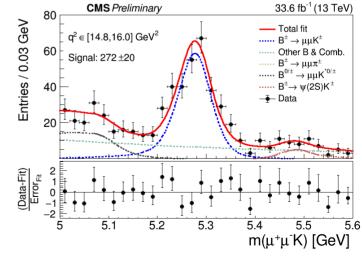

5.6

5.6


G. Karathanasis

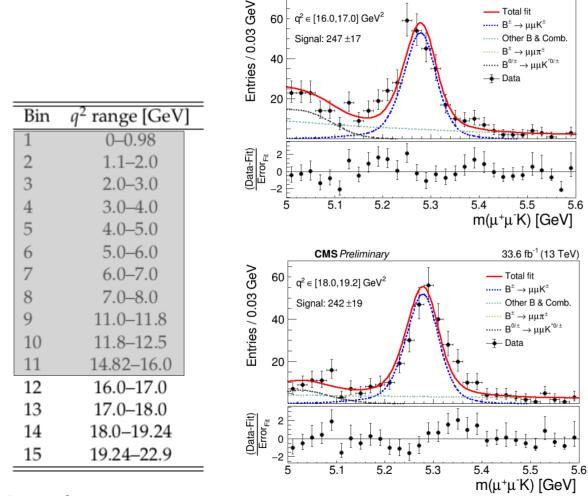

54

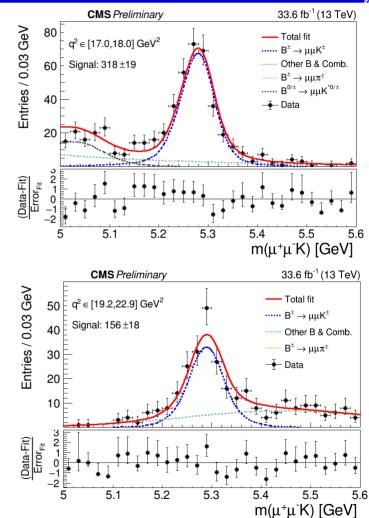

B $\rightarrow \mu\mu K$ mass fits in q^2 bins



G. Karathanasis

Main analysis


B $\rightarrow \mu\mu K$ mass fits in q² bins


CMS Preliminary

33.6 fb⁻¹ (13 TeV)

Main analysis

G. Karathanasis

56