#### 



#### **Neutrino Anomalies and NEOS-II**

Sunny Seo Wine and Cheese Seminar, FNAL 3 November 2023

## Neutrino Oscillation



#### What causes $\nu$ oscillation?

# (1) v flavor eigenstate ↓ v mass eigenstate

#### (2) v masses are not degenerate.

$$\begin{bmatrix} \nu_e \\ \nu_\mu \\ \nu_\tau \end{bmatrix} = \begin{bmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{bmatrix} \begin{bmatrix} \nu_1 \\ \nu_2 \\ \nu_3 \end{bmatrix}$$
PMNS matrix in 1962

$$\left| \boldsymbol{v}_{\alpha} \right\rangle = \sum_{i} U_{\alpha i} \left| \boldsymbol{v}_{i} \right\rangle$$

$$\alpha = e, \mu, \tau$$
  
 $i = 1, 2, 3$ 





#### Current status of neutrino parameters: the era of very precise neutrino physics





## Reactor v: 5 MeV Excess





# Are these anomalies due to

- Model problem?
- Unknown background?
- Systematic effects?
- New physics (sterile v? etc.)
- We are getting to know the answers better, but not completely yet.



## 3+1 Neutrinos

Sterile neutrinos are searched only "via oscillation" w/ active neutrinos.



 $U_{3+1} = U(U_{PMNS}, \theta_{14}, \theta_{24}, \theta_{34}, \delta_{14}, \delta_{24}, \Delta m^2_{41})$ 3 mixing angles 2 CPV phases



#### **Sterile v Oscillation Probability (I)**



 $\rightarrow \theta_{\mu e}$  would be very small if  $\theta_{14}$  and  $\theta_{24}$  are small.



#### **Sterile v Oscillation Probability (II)**

#### Disappearance channels



## Reactor v Flux Anomaly



(3+1) v RAA best fit:  $\Delta m_{41}^2 = 2.4 \text{ eV}^2$ ,  $\sin^2(2\theta_{14}) = 0.14$ 



# Neutrino-4 (2016-2020)

- SM-3 Reactor: 100 MW<sub>th</sub>
- Segmented GdLS (1.8 ton)
- Baseline: 6 -12 m





#### ~140 K IBDs

#### Best fit:

- $\Delta m_{41}^2 = 7.30 + /- 1.17 eV^2$
- $\sin^2(2\theta_{14}) = 0.36 + 0.12_{stat} (2.9 \sigma)$



### Current VSBL Reactor (3+1) v Limits



# VSBL Near Future Plans

#### DANSS-II

- -- Data-taking until spring 2022
- -- Finish upgrade of detector in 2022 E resolution goal: 13% @1MeV

#### **PROSPECT-II**

- -- will upgrade detector
  - PMTs outside LS target
  - Better isolation & control of LS
  - Increase target size
- -- Data-taking: 2025 (?)

#### Neutrino-6

- -- upgrade current detector (Neutrino-4)
- -- Restart of data-taking: end of 2022



## BEST

proposal: 1006.2103, 1204.5379, ... artificial dichromatic source:  ${}^{51}$ Cr 3.4 MCi ( $\Delta W/W < 0.5\%$ ) 4 kg

neutrino flux measurment:  $^{71}\text{Ga} + v_e \rightarrow \ ^{71}\text{Ge} + e^-$ 

2 detector volumes: (7.5 t, 40 t) for the flux cross check

geometry is chosen: to search for  $\simeq$  1 eV neutrino

data taking: July–September 2019

 $\tau_{^{51}Cr} = 27.7d$ 



## MiniBooNE Anomaly

# $\frac{\nu_{e} \colon 18.75 x 10^{21} \text{ POT}}{\overline{\nu_{e}} \colon 11.27 x 10^{20} \text{ POT}}$



## MicroBooNE

#### BNB: 1.56x10<sup>21</sup> POT NuMI: 2.37x10<sup>21</sup> POT



\* No evidence of low energy (γ, e) excess events
\* (3+1)v analysis partially excludes LSND allowed region
\* Precise measurements on v-Ar x-section
\* More exciting results are expected soon.

#### LSND+MiniBooNE anomaly still remains

- \* Unknown other background?
- \* New physics?
- \* More complicated model?

sterile v

+ (decay, NSI, decoherence..)



#### $\nu_{\mu}$ Disappearance vs. $\nu_{e}$ Appearance



In  $v_{\mu}$  disappearance channel, no hint of strile v is observed unlike  $v_{\mu}$  appearance channel

 $\rightarrow$  Contradiction !!

In beam neutrinos, this contradiction should be resolved.



## Short Baseline Neutrino (SBN) Status @Fermilab

SBND

**NNN23** 



(2024)(2014 - 2020)(2021 - )Not to scale! 112 tons 89 tons 476 tons **Booster** M. Del Tutto. 470 m 600 m J. Zennamo

**MicroBooNE** 

**ICARUS** 

- Detector installation: 2023
- Cryogenic commission: end of 2023
- LAr filling: early 2024

**Systematic Constraint** (~% level)



DETE



- Detector installation: July '18 '19
- **Detector commissioning: 2020**
- 1<sup>st</sup> Physics data: June 2022
- Has been taking data for 1 year so

far



## SBN@Fermilab Sensitivities

- Reach of full program
  - SBND/ICARUS (6.6e20 POT ~ 3 years)

MicroBooNE (13.2e20 POT ~ 6 years)

Appearance and disappearance tested in one program

SBN sensitivities for 6.6 e20 protons on the **BNB** target as per SBN proposal.  $(e^{\sqrt{2}})^{10^2}$ SBND (6.6e20 POT) MicroBooNE (13.2e20 POT) MicroBooNE (13.2e20 POT) ICARUS (6.6e20 POT) Injected Point  $\sin^2 2\theta_{\mu\mu} = 0.07$ , Injected Point,  $\Delta m_{41}^2 = 1.32 \text{ eV}^2$ +  $\sin^2 2\theta_{ue} = 0.003$ ,  $\Delta m^2_{41}$  $\Delta m^2_{41}$  $\Delta m_{41}^2 = 1.32 \text{ eV}^2$ 0% MINOS/MINOS MiniBooNE 90% IceCube --- 99% IceCube MiniBooNE (v) 99% CL KARMEN 99% CL LSND w/ DiF 99% CL 50 SBN Stat+Sys 5 SBN Stat+Svs 5 SBN Stat-Only 5 SBN Stat-Only  $10^{-1}$  $10^{-1}$ 50 SBN Stat+Syst 50 SBN Stat+Syst 99% SBN Stat+Syst 90% SBN Stat+Syst 99% SBN, Increased POT Projection: 90% SBN, Increased POT Projection: SBND (9e20) MicroBooNE (13.2e20) ICARUS (14e20) SBND (9e20) MicroBooNE (13.2e20) ICARUS (14e20)  $10^{-2}$  $10^{-2}$  $10^{-3}$  $10^{-3}$  $10^{-2}$  $10^{-2}$  $10^{-4}$  $10^{-1}$  $10^{-1}$  $\sin^2 2\theta_{\mu\mu}$  $\sin^2 2\theta_{ue}$ **Fermilab**  $\boldsymbol{\nu}_{\mu}$  disappearance  $\nu_e$  appearance

## JSNS<sup>2</sup> @J-PARC

#### → Direct tests for LSND

| Experiment          | $\nu$ -source | Energy $E_{\nu}$ | Distance $L$          | Signal                                                                        |
|---------------------|---------------|------------------|-----------------------|-------------------------------------------------------------------------------|
| LSND [1]            | $\pi$ DAR     | $40 { m MeV}$    | 30 m                  | $\bar{ u}_{\mu}  ightarrow \bar{ u}_{e}$                                      |
| MiniBooNE [2]       | $\pi$ DIF     | $800 { m MeV}$   | 600 m                 | $ u_{\mu}  ightarrow  u_{e} / \ ar{ u}_{\mu}  ightarrow ar{ u}_{e}$           |
| FNAL SB program [7] | $\pi$ DIF     | $800 { m MeV}$   | 110 m / 470 m / 600 m | $ u_{\mu} \rightarrow \nu_{e} \ / \ \bar{ u}_{\mu} \rightarrow \bar{ u}_{e} $ |
| $JSNS^2$ [6]        | $\pi$ DAR     | $40 { m MeV}$    | 24 m                  | $\bar{ u}_{\mu}  ightarrow \bar{ u}_{e}$                                      |

- 17 ton GdLS target (cf. LSND = 167 ton LS)
- Better E resolution than LSND (2.4 % vs 7% at 45 MeV)



JSNS<sup>2</sup>-II



## Sterile v search w/ IsoDAR@Yemilab

#### The IsoDAR Cyclotron and Ion Source





**IBD** interaction



## Sterile v Search w/ IsoDAR@Yemilab

(3+2) v

IsoDAR@Yemilab: (3+2) Model

with Kopp/Maltoni/Schwetz Parameters

#### **Possible Models & Signatures**

arXiv:2111.09480 PRD 105 (2022) 5, 052009

#### (3+1) $v + v_s$ decay





#### → IsoDAR@Yemilab can well distinguish different new physics models.

The (<u>3+1)+decay model</u> significantly reduces the tension between appearance 1910.13456 and disappearance experiments, improving the global-data goodness-of-fit.
 Fermilab

(3+1) v

IsoDAR@ Yemilab:  $\Delta m^2 = 1 eV^2$  and  $sin^2 2\theta = 0.1$ 

#### Sterile neutrino search Sensitivity

#### IsoDAR @Yemilab $P(v_e \rightarrow v_e)$



- World-leading result
- Definite conclusion on (3+1) v or not

#### Advantage:

Unlike reactor/accelerator v, IsoDAR has very well defined v flux and shape.



# **NEOS-II**

## Neutrino Experiment for Oscillation Study

Using reactor neutrinos at very short baseline



1 GW<sub>th</sub> reactor → ~2x10<sup>20</sup>  $\overline{v}_{e}$ /sec

🛟 Fermilab

 $\clubsuit$  Nuclear reactors are copious & isotropic sources of  $\overline{v}_e$  .

# Commercial reactors > 99.9 % $\overline{v}_e$ are produced by <sup>235</sup>U, <sup>239</sup>Pu, <sup>238</sup>U, <sup>241</sup>Pu

#### **IBD** interaction



Plutonium breeding over fission cycle changes  $\overline{v}_e$  rate by 5 ~ 10% and energy spectrum.





# NEOS-I & II Site



# **NEOS-II** Collaboration

#### Currently, total 20 members from 7 institutions



- Chung-Ang University (CAU)
- Institute for Basic Science (IBS)
- Korea Atomic Energy Research Institute (KAERI)
- Kyungpook National University (KNU)
- □ Korea University (KU)
- **Given Sejong University (SJU)**
- □ Sungkyunkwan University (SKKU)



#### □<u>NEOS-II Goals:</u>

- 1. understanding of reactor neutrino anomalies (5 MeV excess)
- 2. Search for sterile neutrinos

#### **Challenges:**

- 1. Decrease of light yield during data-taking
- 2. Small group consisting of only domestic institutions & small # of students

#### **Opportunities:**

- 1. NEOS-II detector has one of the **best energy resolutions** among VSBL exp.
- 2. High statistics (commercial reactor)
- 3. Low background (good overburden: ~20 m.w.e.)
- 4. **S/B = 29** (excellent PSD)
- 5. Full Fuel cycle data
- 6. Beyond NEOS-II?



## NEOS-I Results in 2017

NEOS 180 (46) days reactor-on(off)data
1977 (85) IBD/day during on (off) period; S/B ~ 22



## NEOS-I Results in 2017



NEOS 180 (46) days reactor-on(off)data

- RAA best fit is excluded at ~4  $\sigma.$
- Limited by "systematic" uncertainty (model, energy scale).

\*\* Daya Bay data was used as a reference model (3v osc.).

PRL 118, 121802 (2017)



## NEOS-I + RENO Results in 2022



\*\* RENO data was used as a reference model (3v osc.).

Phys. Rev. D 105, L111101 (2022)]

- → The NEOS-I & RENO result is improved compared to the NEOS-I & DYB result.
- The best fit falls in RAA 95% allowed region.

> NEOS+RENO best fit: (2.41 eV<sup>2</sup>, 0.08) with  $\chi^2(3\nu) - \chi^2(4\nu) = 8.4$ , p-value = 8.2%





## NEOS-II (Sept. 2018 – Oct. 2020)

- Refurbished detector from NEOS-I.
- Took ~388 live days of data (full fuel cycle) + 2 OFF periods (45+67 days)
- Time evolution of reactor v flux/shape; spectral decomposition (<sup>235</sup>U, <sup>239</sup>Pu)
- Rate+Shape analysis on (3+1)v oscillation



#### Hanbit-5 reactor and tendon gallery





# **NEOS** Detector

#### > NEOS-II detector is refurbished from NEOS-I, almost identical.





- Homogeneous LS target — 1008 L volume
  - (R 51.5, L 121) cm
- LAB+UG-F (9:1)

0.03% bis-MSB

**3% PPO** 

- 0.5% Gd loaded for high
  - neutron capture efficiency
- 38 8" PMT in mineral oil buffer
- Shieldings
  - 10 cm B-PE (n), 10 cm Pb ( $\gamma)$
  - active muon counter
- Data AcQuisition
  - 500 MS/s FADC (waveform)
  - 62.5 MS/s ADC (μ veto)
- Source calibration through chimney

\* Newly produced Gd-LS w/ the same recipe

\* 9/15 muon counters are newly prepared.



## NEOS-II Preparation (July~Sept. 2018)













Fermilab



















#### 2018. Sept.

Fermilab

# NEOS-II Challenge

Continuous decrease of Light Yield (LY) during data-taking



- ~46% decrease is observed at end of data-taking
- Delayed time increase is observed, too.

Light yield decrease is independent on energy.

# GdLS Sample from Target in 2019

\* Precipitation was observed at the wall and bottom.



Sample taken in 2019.03.05



\* Precipitation contains Gd compound.

❑ Possible causes of LY decrease:
 → Inflow of humidity/oxygen to GdLS??
 → High concentration of Gd??



## Coping w/ LY Decrease



- → Reference: <sup>208</sup>Tl peak in data
- → This is always done regardless of LY decrease.

2. Energy resolution correction

- → Corrected to the worst energy resolution (7.3%)
- 3. Change IBD selection cut values
- $\rightarrow$  To keep the same detection efficiency



# **NEOS-II** Initial & Last Data Sets

#### Prompt Vs. Delayed Energy



 $\rightarrow$  The latest data set (Period 9) looks fine!

& worse E resolution

# Energy Calibration (I)

#### Bi-weekly, taking source data at the target center



<sup>137</sup>Cs: 0.66 MeV γ

- <sup>22</sup>Na: 2.297 MeV γ (2x0.511+1.275) MeV
- <sup>60</sup>Co: 2.505 MeV γ (1.173+1.332) MeV
- <sup>252</sup>Cf: n-H (2.2MeV γ) n-Gd (~8 MeV γs)

**PoBe**: 0.8/4.44 MeV γ + n



# Energy Calibration (II)





- Fully deposited γ events are modeled by a Gaussian.
- Not fully deposited γ events are fitted by a Crystal ball.
   (There are many escaping γs due to the small size of the detector.)



## Source Data & MC





# 2-D Calibration



48

# □ Data and MC match well, including escaping $\gamma$ s.



## Source Data Vs. MC



Linearity between data and simulation for calibration sources

Note: all data points have participated in the fitting.



# **NEOS-II MC Improvement**

- NEOS simulation is based on <u>Geant4</u>.
   → full simulation including electronics simulation
- An update was made for NEOS-II.
- n-Gd MC update:
   GLG4Sim → new model (by Okayama Univ.)

**ANNRI-Gd model** 

PTEP 2019, 023D01



# **PMT Charge Correction**

#### To correct PMT gain differences & its drift over time



#### <sup>60</sup>Co source data at the center position



# Energy Reconstruction (I)



# Energy Reconstruction (II)

$$Q = S(t) \cdot U(A_z) \cdot \sum_{i}^{38} q_i \qquad S(t) = \frac{Q(^{208}\text{Tl}, 0)}{Q(^{208}\text{Tl}, t)}$$





Uniformity

Correction

# **Energy Reconstruction (III)**



# **Energy Resolution**



🛟 Fermilab

# Single Event Spectrum



- Muon rate: ~260 Hz
- About 80% single events survive after muon veto cuts



## Inverse Beta Decay (IBD) Selection



### **PSD Cut: CNN**



- CNN + waveform (FFT)
- Low energy background reduced by up to 40% compared to Q\_tail/Q\_total method.



### **IBD** Candidates & Background



## **NEOS-II Background Compositions**



Reactor-OFF 2 (67 live days)

🛟 Fermilab

#### Reactor-OFF 1 (45 live days)

## **IBD** Prompt Spectrum



• The Averaged Fission Fractions

| Fission Isotope | <sup>235</sup> U | <sup>239</sup> Pu | <sup>238</sup> U | <sup>241</sup> Pu |
|-----------------|------------------|-------------------|------------------|-------------------|
| NEOS-II         | 0.57             | 0.30              | 0.07             | 0.06              |

Huber-Mueller (HM) model



#### **9 Groups of Data**



Data is grouped into 9
 to observe the evolution
 of reactor v flux/shape.

IBD selection cuts are applied to each group of data to keep the same detection efficiency.



time



## **NEOS-II Systematic Uncertainties**

|                                   |                       | preliminary |
|-----------------------------------|-----------------------|-------------|
| Parameter                         | Value / efficiency    | Uncertainty |
| Number of target proton           | $6.20 \times 10^{28}$ | 1%          |
| Distance                          | 23.7 m                | 2%          |
| Delayed energy,<br>n-capture time | 49%                   | 0.5%        |
| Muon veto, multiplicity           | 95.7%                 | < 0.1%      |
| PSD                               | 99.5%                 | < 0.5%      |
| Prompt energy                     | 97.5%                 | < 1%        |
| Energy scale                      |                       | 0.5%        |
| U-238, Pu-241 flux                | Huber-Mueller         | 10%         |

Preliminary



# $\chi^2$ Formula for <sup>235</sup>U & <sup>239</sup>Pu Spectrum Separation



65

## **IBD** Yields



## IBD Yield Ratio



 $\rightarrow$  NEOS-II result has a tension with the Huber model.



## **Spectral Decomposition**



 → The "5 MeV bump" is seen in <sup>235</sup>U
 → but inconclusive for <sup>239</sup>Pu. (stat. error is big)





## NEOS-II: Sterile v Search Sensitivity



- Rate+Shape analysis is on-going.
- Slightly better sensitivity due to statistical improvement. (x 2)
- A preliminary result is expected soon.
   A preliminary result is expected soon.



# Summary

□ Neutrino oscillation physics has been very successful, but the neutrino anomalies (4~5  $\sigma$ ) still need to be resolved.

 $\hfill\square$  Some on-going & future v experiments could shed light on the v anomalies.

JSNS<sup>2</sup>-II, IsoDAR, PROSPECT-II, DANSS-II, Neutrino-6, BEST-II etc.

■ NEOS-II is to separate <sup>235</sup>U and <sup>239</sup>Pu reactor v spectra, and to search for a sterile neutrino. Data-taking is finished.

Light Yield decrease was well handled. Its effect is marginal.

□ IBD Yields & <sup>235</sup>U and <sup>239</sup>Pu separation analysis are being finalized.

• Preliminary result on sterile neutrino search is expected soon.



SBN