Physics Potential of a Future Large v Detector in Korea

Sunny Seo Neutrino Division Fermilab

Neutrino Seminar Fermilab

2023.10.19

Physics Potential of a Few Kiloton Scale Neutrino Detector at a Deep Underground Lab in Korea

Seon-Hee Seo,^{*5}, Jose Alonso¹¹, Pouya Bakhti⁸, Janet Conrad¹¹, Steve Dye⁴, Doojin Kim¹⁴, Jost Migenda⁹, Marco Pallavicini⁷, Jong-Chul Park^{3, 6}, Meshkat Rajaee⁸, Mike Shaevitz², Seodong Shin^{6, 8}, Joshua Spitz¹³, Daniel Winklehner¹¹, Slawomir Wronka¹², Michael Wurm¹⁰, Minfang Yeh¹

arXiv:2309.13435

¹Chemistry Division, Brookhaven National Laboratory, USA ²Dept. of Physics, Columbia University, New York, NY, USA ³Dept. of Physics and Institute of Quantum Systems (IQS), Chungnam National University, Daejeon 34134, Republic of Korea ⁴Dept. of Physics and Astronomy, University of Hawaii, Honolulu, HI 96822, USA ⁵Center for Underground Physics, Institute for Basic Science (IBS), Daejeon, 34126, Republic of Korea ⁶Particle Theory and Cosmology Group, Center for Theoretical Physics of the Universe, Institute for Basic Science (IBS), Daejeon, 34126, Republic of Korea ⁷Dept. of Physics, University of Genoa, Italy ⁸Laboratory for Symmetry and Structure of the Universe, Department of Physics, Jeonbuk National University, Jeonju, Jeonbuk 54896, Korea ⁹Dept. of Physics, King's College, London, UK ¹⁰Dept. of Physics, Mainz University, Germany ¹¹Dept. of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA ¹²Dept. of Accelerator Physics and Technology, National Center for Nuclear Physics, Poland ¹³Dept. of Physics, University of Michigan, Ann Arbor, MI 48109, USA ¹⁴Mitchell Institute for Fundamental Physics and Astronomy, Dept. of Physics and Astronomy, Texas A&M University, College Station, TX 77843, USA

Outline

- Introduction to Yemilab
 - --Large Neutrino Detector, a.k.a. LSC

LSC: Liquid Scintillation Counter

- LSC Physics Program and Potentials
 - 1. Solar/Geo/Supernova Burst ν
 - 2. Dark photon Search
 - 3. Sterile Neutrino Search

Yemilab @ Handuk Iron Mine

The 1st deep underground lab dedicated to science in Korea

Fermilab Nu Seminar Oct. 19, 2023

Yemilab Construction (2017.09 – 2022.09, 60 months)

35 months

- ► 1^{st} construction (2017.09 2020.08)
 - Tunnel excavation : 70% of whole Yemilab volume
 - Building cage system
 - Purchase of surface office building

 $\sim 2^{nd}$ construction (2021.06 – 2022.09) 15 months

- LSC tunnel excavation : 30% of whole Yemilab volume
- Electricity, machinery, refuge, toilets
- Hoist, detector room, clean rooms for AMoRE-II
- Renovation of surface office

K.S. Park @Yemilab Workshop

Media Coverage on "Yemilab Opening"

과학

2022,10.05 14:00

준공

o A O O B

기존 실험실 10배·세계 6위 규모

강원 정선 지하 1000m에서 우주 비밀 밝힌다

기초과학연구원 고심도 지하실험시설 '예미랩' 5일 준공

기사입력: 2022년10월05일 15:34 최종수정: 2022년10월05일 15:34

[단독] 지하 1km 아래 '거대 실험실'…그곳에 우주 비밀이 있다

중앙일보 | 입력 2022.08.19 10:50 업데이트 2022.08.19 16:40

최준호 기자 구독

기초과학연구원, 암흑물질탐색·중성미자 연구 2023년부터 본격 실험

안경 IT·과학

2022-10-05 오상미 기자 osm@mtnews.net

[기계신문] 과학기술정보통신부(이하 '과기정통부')와 기초과학연구원(IBS)은 5일(수) 강원도 정 예미랩 준공식을 개최했다

지하 1100m 어둠 속에서 '우주 암흑물질의 비밀' 푼다

오늘의 주요뉴 11.2 2092200

우주의 수수께끼 풀러 1000m 땅속으로 들어가다

(앞) 이근영 기자 + 구독 ★ 류 가⁺

You Tube 팝콘뉴스TV

우오현SM그룹회장 "세계 최초 암흑물질 발견 위해 적극 협력" SM한뎍철광산업,정선 '에미랩 지하실험실' 완공

정완력 기자 (hyuck277@daum.net) | 기사입력 2022/10/07 [13:43]

가 + 가 - 프린트

과기부·기초과학연, 세계 6위 규모 지하실험실 '예미랩'

5월 강원도 정선군서 준공는 Fermilab Nu Seminar Oct. 19, 2023

[최준호의 첨단의 끝을 찾아서]IBS 지하실험연구단 정선 예미랩

The 1st Yemilab Workshop

Oct.15-18, 2022

Oct 15 – 18, 2022 High-1 Resort, Grand Hotel Convention Tower 5th floor Asia/Seoul timezone

https://indico.ibs.re.kr/event/531/architerm

Q

This is a Hybrid Workshop. Registered participatns will get ZOOM connection info.

Overview

Timetable

Contribution List

Registration

Participant List

Venue

Accommodation

Meals and Banquet

Gondola and Hiking

LOC

Covid Situation

Visa & Entrance to Korea

Contact

sunny.seo@ibs.re.kr

Welcome to the 1st Yemilab Workshop!

Yemilab is the first deep underground lab dedicated to science in Korea and its construction was successfully finished recently. To celebrate the kick-off of the Yemilab, we are organizing this workshop and cordially invite world experts in underground physics. New ideas, technologies, or perspectives will be shared in this workshop.

Anyone who is curious or excited about Yemilab is very welcome to join us!

No registration fee.

Free meals for all in-person participants who register by Oct. 6 (Th).

- 10/15 (Sat): Arrival, Registration, Reception
- 10/16 (Sun): Yemilab Tour
- 10/17(M)-18(Tu): Physics Workshop, Banquet

World Underground Labs

□ <u>Yemilab</u> is the 6th largest <u>underground lab</u> in the world.

Muon Flux Comparison

Large v Detector (LSC) @Yemilab

LSC = Liquid Scintillation Counter

Yemilab Layout (Top view)

AMORE hall

LSC cavern

Candidate Detector Design

Target: 2.26 kton LS Buffer: 1.14 kton mineral oil Veto: 2.41 kton water

1200(1800,2400) x 20 inch PMTs = 20% (30, 40)% coverage

Why LS Detector?

Light yield of LS is high.

→Good energy resolution, low energy threshold →Good for physics at $O(1^{10} \text{ MeV})$

- Discovery of neutrino in 1956 was done using LS detector by Reines and Cowan's team.
- ✓ θ_{13} in PMNS matrix was discovered using LS detectors in 2012 by **Daya Bay & RENO**.
- ✓ Many sterile neutrino search experiments using reactor v use LS detector (NEOS, PROSPECT, STEREO etc).
- ✓ Borexino solar v experiment used LS detector.
- \checkmark **JUNO** is a LS detector to determine v mass ordering.

Broad Physics Program

16

Broad Physics Program

Hertzsprung-Russell Diagram

Main Sequence Stars

- Hot \rightarrow Bright
- Cool \rightarrow Dim
- ~90% stars in universe

Understanding the Sun would provide important insights to understand Main Sequence Stars.

Solar Neutrino Production

Solar neutrino spectra

~70 billion solar v/cm²/sec @Earth

@Borexino

Solar v Experiment

LSC

Borexino (2007-2021)

x 8

Borexino Solar Neutrino Measurements

Borexino (Nature, 2018)

Source	Count Rate [cpd/100t/d]	Comments on detection	First detection in BX
⁷ Be	~ 48	Clear signature on the shoulder	2007
8 B	< 1	Small, but high energy, low background	2010
рер	~ 3	Weak signature on top of ¹¹ C	2012
рр	~ 140	Low energy, partially covered by ¹⁴ C	2014
CNO	~ 5	Small signal, migrating background (see talk)	2020
hep	Not measurable today	Signal too low, mostly covered by ⁸ B	never

→ So far, Borexino is the only experiment which measured all types of solar v except *hep* v.

Borexino Solar Neutrino Measurements

Borexino (Nature, 2018)

\rightarrow Error bars are large!

New Physics with Solar Neutrinos?

→ We aim to reduce the error bars with LSC detector "Bigger & Better" than Borexino.

Borexino-measured values are used with LSC statistical error.

Solar Metallicity (Z)

The mass abundance of metals (all elements heavier than He)

pp chain

cycle

S

Year	1998	2009	2011	2021	2022
Model	GS98	AGS09met	Caffau11	AGG21	MB22
Z/X	0.023	0.018	0.0209	0.0187	0.0225
	HZ	LZ	LZ	LZ	HZ

"Even a very small fraction of metals is sufficient to alter the behavior of a star completely."

- Impact the fate of a start: size, temperature, brightness, lifespan, etc.
- Solar metalicity becomes a standard for other stars' metalicity.

Geo Neutrinos

Geo & Reactor $\nu\,$ Estimations at LSC

IBD channel

ES channel

Geo-neutrinos: 60.6 ± 13.6 IBD/year Reactor-neutrinos: 460 ~ 1500 IBD/year

Geo-neutrinos are enhanced in this channel.

Solar v background: ~x2

(→ Directionality will help to remove this bkg.)

10

geoneutrinos.org

SN 1987A @Large Magellanic Cloud

7:35 (UT), Feb. 23, 1987, at 50kpc

We need more precise measurement w/ more statistics.

Betelgeuse (at 131pc) could become a Supernova any time.

(Since 2019)

- SNv Community
- Astronomers (optical)

GW Community

 \rightarrow Multi-messenger

arXiv:2011.00035

Supernova Burst v Estimations @ 10 kpc

LSC is expected to observe 430~820 v events from SN burst at 10 kpc.

Broad Physics Program

33

Dark Photon (DP) ϕ , γ' , A'

DP is the simplest and most popular hypothetical particle in a dark sector.

- DP can mediate interaction w/ dark matter.
- DP itself can be a candidate of dark matter.
- DP can be searched via vector portal.

$$\mathcal{L} \supset -\frac{1}{4} F'_{\mu\nu} F'^{\mu\nu} + \frac{\epsilon}{2} F'_{\mu\nu} F^{\mu\nu} + \frac{m_{\phi}^2}{2} A'_{\mu} A'^{\mu}$$
DP field strength tensor
$$U(1)_{\rm D} \text{ gauge field}$$

ε: "kinetic mixing" parameter

Dark Photon Search Scheme w/ LSC

DP search experiments at underground

Izaguirre, Krnjaic, Pospelov, PRD 92, 095014 (2015)

Dark Photon Production & Detection @Yemilab

<mark>e⁻ beam</mark>

"Bremsstrahlung-like" process "Dark-strahlung"

Visible Decays

Expected # of Dark Photons

Production: "dark-strahlung"

Detection : $A' \rightarrow e+e-$ or 3γ , or A' absorption

to decay signal.

$$x[1 - \exp(-L_{dec}/I_{\phi} - L_{det}/\lambda_{det})]$$

decay or absorption signal

where, L_{det} : detector length λ_{det} : DP abs. length in detector

Rough Background Estimation

Signal = Beam (ON – OFF) data

 \rightarrow # of background events in beam OFF data can affect our sensitivity

Background types	#. BKG events (/year/1 kton fiducial vol.)	Comments
Solar v (⁸ B), residual, external BKG	935	Estimated from Borexino arXiv:1709.00756
Atmospheric v	67	Estimated from Borexino J.Phys.Conf.Ser. 675 (2016) 1, 012014
Neutrons from beam	0	Block w/ rocks (few meters) & 5 MeV cut
v (from e beam cc/nc) scattering	0	Negligible (10 ⁻¹⁰)
Total	1002	

Current Limits & Future Projections

S.H. Seo & Y.D. Kim JHEP04(2021)135

Best "direct" DP search sensitivity in $M_{\phi} < 30$ MeV (10³ BKG)

 $\gamma \rightarrow A'$ Oscillations ($m_{\phi} < 1 \text{ MeV}$)

- γ —> A' oscillation @ target (Tungsten) $P(\gamma \to A') = \epsilon^2 \times \frac{m_{\phi}^4}{(\Delta m^2)^2 + E_{\gamma}^2 \Gamma^2},$ 1812.02719 1804.10777 1501.07292
- A'-> γ oscillation @ detector (Water) $P(A' \rightarrow \gamma) = \epsilon^2 \times \frac{m_{\phi}^4}{(\Delta m^2)^2 + E_{\gamma}^2 \Gamma^2} \times \Gamma L,$

where
$$\Delta m^2 = \sqrt{(m_{\phi}^2 - m_{\gamma}^2)^2 + 2\epsilon^2 m_{\phi}^2 (m_{\phi}^2 + m_{\gamma}^2)} \approx |m_{\phi}^2 - m_{\gamma}^2|, \ m_{\gamma} = \sqrt{4\pi \alpha n_e/m_e}$$

$$P(\gamma \leftrightarrow A') = \epsilon^4 \times \frac{m_{\phi}^8}{\left((m_{\phi}^2 - m_{\gamma}^{\mathrm{T}\,2})^2 + E_{\gamma}^2 \Gamma_{\mathrm{T}}^2\right) \times \left((m_{\phi}^2 - m_{\gamma}^{\mathrm{W}\,2})^2 + E_{\gamma}^2 \Gamma_{\mathrm{W}}^2\right)} \times \Gamma_{\mathrm{W}}L,$$

$$N_{\phi}^{\text{osc}} \approx N_{\text{e}} \times \int_{E_{\gamma}^{\min}}^{E_{\gamma}^{\max}} dE_{\gamma} P(\gamma \leftrightarrow A') \int_{0}^{T} dt \left(I_{\gamma}^{(1)}(t, E_{\gamma}) + I_{\gamma}^{(2)}(t, E_{\gamma}) \right)$$

Sunny Seo, Fermilab

Tsai & Whitis, Phys. Rev. 149 (1966) 1248-1257 Photon flux per electron

$\gamma \rightarrow A'$ Oscillation Sensitivity

S.H. Seo & Y.D. Kim JHEP04(2021)135

Best "direct" DP search sensitivity at sub-MeV region

Broad Physics Program

Short-Baseline Anomalies: Current Status

reactor flux anomaly resolved with new input data to flux calculation

reactor spectra is there really an anomaly?

gallium anomaly unresolved, recently reinforced

LSND unresolved

MiniBooNE unresolved

Short-Baseline Anomalies: Current Status

[1] Sterile neutrino search with <u>IsoDAR</u> @Yemilab

Isotope Decay At Rest

 \rightarrow This method has never been tried!

Publications:

Cyclotron Room

Sterile v search w/ IsoDAR@Yemilab

IBD interaction

IsoDAR@Yemilab Performance

Accelerator	$60 \text{ MeV/amu of H}_2^+$	
Beam Current	10 mA of protons on target	
Beam Power (CW)	600 kW	
Duty cycle	80%	
Protons/(year of live time w/ 100% duty)	1.97×10^{24}	
Run period	5 years	
Live time	5 years $\times 0.80 = 4.0$ years	
Target	9 Be with 99.99% pure ⁷ Li sleeve	
Neutrino creation point spread (1σ)	41 cm	
$\overline{\nu}$ source	⁸ Li β decay (6.4 MeV mean energy flux)	
$\overline{\nu}$ flux during 4.0 years of live time	$1.147 \times 10^{23} \ \overline{\nu}_e$	
$\overline{ u}$ flux uncertainty	5% (shape-only is also considered)	
Location	Yemilab	ĺ
Fiducial mass	2.57 kton	
Distance between source and target (min-max)	9.5-25.9 m	
Fiducial radius	7.5 m	
IBD Detection efficiency	100%	
Vertex resolution	$12 \text{ cm}/\sqrt{E \text{ (MeV)}}$	
Energy resolution	$3.0\%/\sqrt{E~({ m MeV})}$	
Angular resolution	under study	2
Visible energy threshold (IBD and $\overline{\nu}_e$ -electron)	$3 { m MeV}$	
IBD event total (w/ 100% efficiency)	2.02×10^{6}	
$\overline{\nu}_e$ -electron event total (after cuts, 34% efficiency)	7060	

2 M IBD events/5 yrs ~7000 ES events/5yrs

"Detector at Yemilab" assumptions are basically consistent with "KamLAND-897 tons, but bigger (and with the *possibility* of directional reconstruction)"

Sterile v Search w/ IsoDAR@Yemilab

Possible Models & Signatures

(3+1) v

Observed/Predicted

arXiv:2111.09480 PRD 105 (2022) 5, 052009

(3+1) $v + v_s$ decay

(3+2) ν

→ IsoDAR@Yemilab can well distinguish different new physics models.

• The (<u>3+1)+decay model</u> significantly reduces the tension between appearance and disappearance experiments, improving the global-data goodness-of-fit.

1910.13456

Sterile neutrino search Sensitivity

IsoDAR @Yemilab $P(\overline{v}_e \rightarrow \overline{v}_e)$

- World-leading result
- Definite conclusion on (3+1) v or not

Advantage:

Unlike reactor/accelerator v, IsoDAR has very well defined v flux and shape.

IsoDAR@Yemilab Elastic Scattering Events

arXiv:2111.09480

[2] Sterile v search w/ radioactive sources

 $P(v_e \rightarrow v_e)$

The Borexino detector and SOX

Useful data: distance range 4 - 12.25 m (Yemilab will be better)

Source

Distance range: 7 – 22 m

LSC @Yemilab

Rough Timeline

LSC @Yemilab

Still need funding for the LSC detector. The construction depedns on when we get the funding.

Summary

□ In the new Yemilab, a <u>cavern</u> for v detector (~2.3 kton LS target) was prepared.

 \rightarrow multi-purpose detector: Solar/Geo/SN v, dark photon, sterile v, etc.

 \Box Best measurements on solar v flux might be possible.

□ 1 year operation of 100 MeV-100 kW e^{-1} beam (2x10²³ EOT): → best "direct" dark photon search sensitivity in O(1 eV) < M_{ϕ} < 30 MeV (assuming 10³ bkg events/year)

□ IsoDAR@Yemilab: best sensitivity for sterile v search in $P(v_e \rightarrow v_e)$ channel. Can test different new physics models.

- Some disagreements between MiniBooNE & MicroBooNE
- The tension between appearance
 and disappearance channels

→ Need a more complex sterile v model ?

(if new physics is indeed the source of the anomalous results)

IsoDAR@Yemilab can test more complex sterile v model.

New physics search w/ IsoDAR@Yemilab

$$g_L = rac{1}{2} + \sin^2 heta_W, \ \ g_R = \sin^2 heta_W$$

$$\left[\sin^2 2\theta_W = (4\pi\alpha)/(\sqrt{2}G_F M_Z^2)\right]$$

NSI's alter the Standard Model couplings: $\bar{g}_R \equiv g_R^e + \varepsilon_{ee}^{eR}, \quad \bar{g}_L \equiv 1 + g_L^e + \varepsilon_{ee}^{eL},$ $\sigma(\varepsilon_{ee}^{eR}, \varepsilon_{ee}^{eL}) = \frac{2m_e G_F^2 E_\nu}{\pi} \left(\bar{g}_L^2 + \frac{1}{3} \bar{g}_R^2 \right).$ (Continued...)

e- spectrum at *t* radiation length in beam target

