
SiPM front-end electronics in NEXT

- An approach based on gated integrators (NEXT-DEMO)
- An approach based on pulse stretching & sampling (NEXT-DBDM)
- A proposed front-end scheme and board for NEXT-100

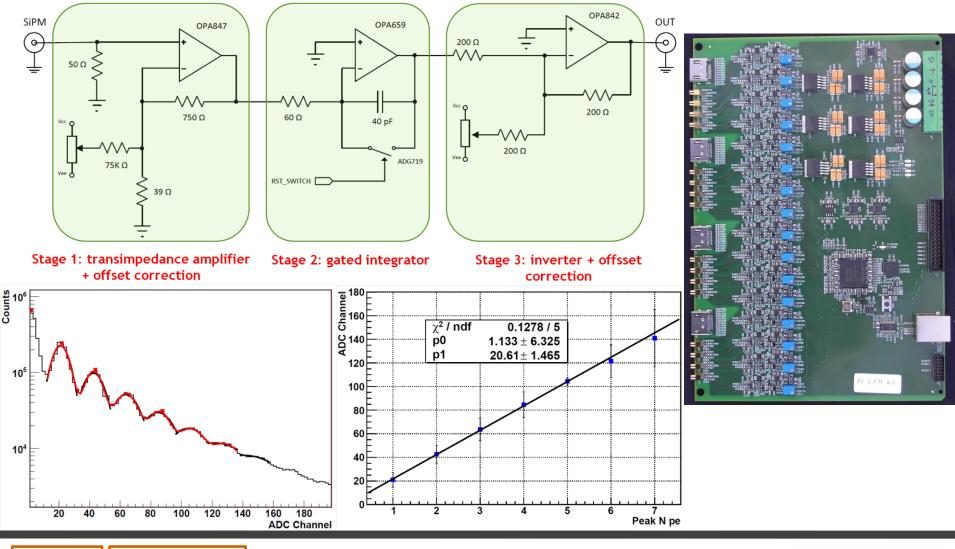
Outline

Review of NEXT-DEMO and NEXT-DBDM solutions

Our proposal for NEXT-100 is based on the first results with these two developments

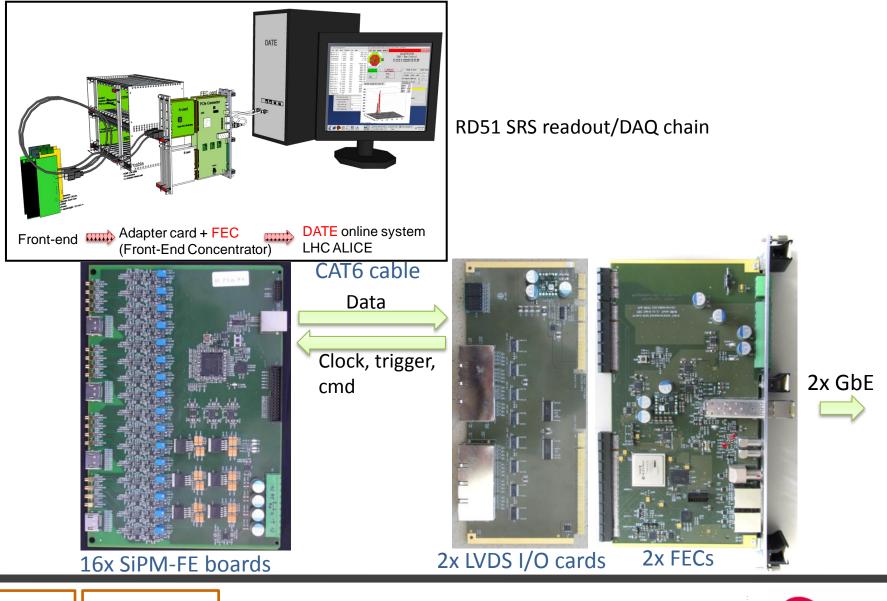
NEXT-DEMO Technical review & discussions for NEXT-100, Fermilab, Dec. 2012

SiPM_FF



Review: NEXT-DEMO FE-SiPM read out (1/3)

NIM A, Vol. 695, 11th December 2012, Pages 229–232 Readout electronics for the SiPM tracking plane in the NEXT-1 prototype


SiPM-FE

NEXT-DEMO

Review: NEXT-DEMO FE-SiPM read out (2/3)

SIPM-FE NEXT-DEMO

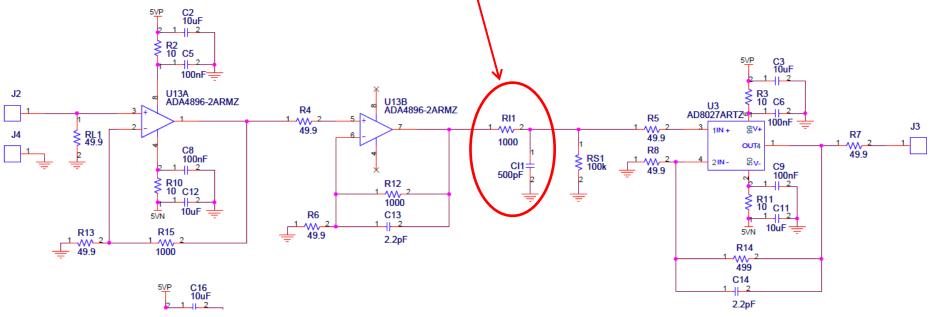
Review: NEXT-DEMO FE-SiPM read out (3/3)

These **amplifiers** will not be used in NEXT-100 because:

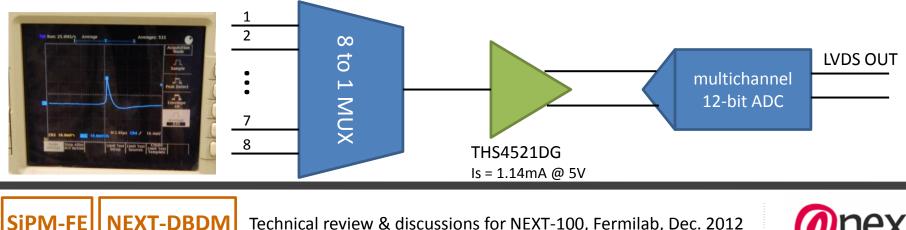
SiPM-FE

□ Power dissipation would be too high (10V*20mA*3 = 600 mW/ch). This requires active cooling

□Offset adjustment by hand for ~7000 ch may be a nightmare, so we need automatic adjustment


□ Also: gated integrator requires a switch, 6.800 switches may create a large noise

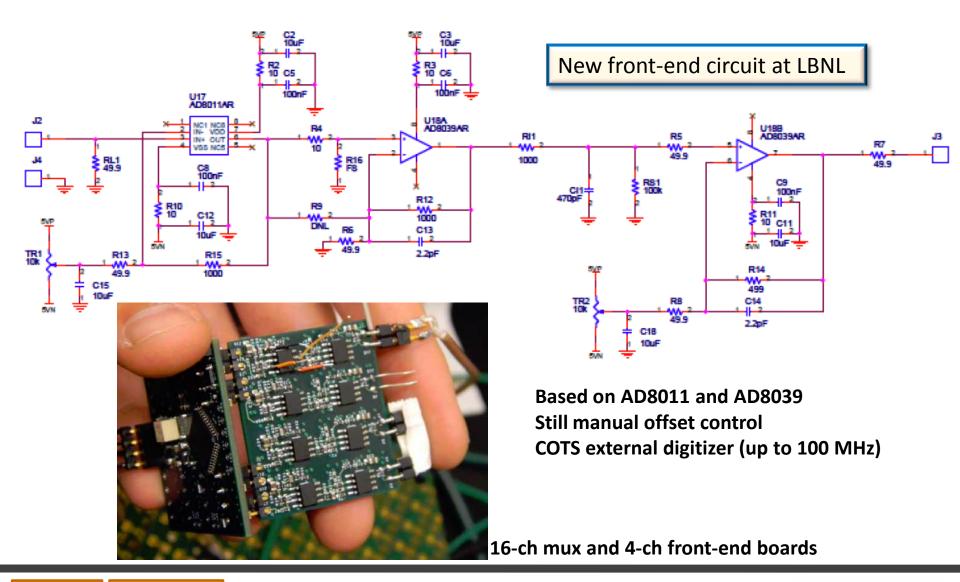
As a result we defined a new scheme (D.Nygren) that has been tested in NEXT-DBDM (next slide)...



Review: NEXT-DBDM FE-SiPM read out (1/4)

Dave: "Replace the gated integrator with a simple RC and use low power amplifiers"

John Joseph: "Circuitry can be further simplified by using multiplexers before the ADC"

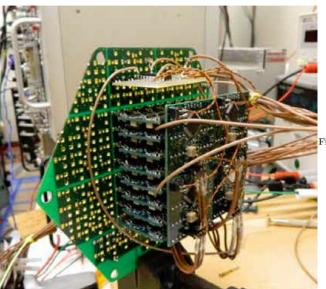

Review: NEXT-DBDM FE-SiPM read out (2/4)

Source: http://www.analog.com/static/imported-files/product_selection_guide/High_speed_amps_sel_table.pdf

Amplifier	Туре	BW 3dB G=1 (MHz)	Noise (nV/√Hz)	V _{offset} (mV)	I _{bias} (μΑ)	l _{quiescent} (mA)	Cost (\$)	Supply (V)
AD8005	CFA, single	270	4	30	10	0,4	1,63	5, ±5
AD8038/9	Single/dual	350	8	3	0,75	1	0,86/1,21	3, 5, ±5
AD8011	CFA, single	400	2	5	15	1	2,27	5, ±5
AD8014	single	480	3,5	5	15	1,1	1,19	5, ±5
ADA4841-1/-2	Single/dual	80	2,1	0,5	5,3	1,2	1,61/2,32	2.7, 5, ±5
ADA4940-1/-2	DIFF single/dual	240	3,9	0,4	1,55	1,25	1,79/2,95	3, 5
AD8029/30/40	Single/dual/ quad	125	16,5	5	1,3	1,3	0,86/1,21/ 1,62	2.7, 5, ±5
ADA4853	.ingle/dual/ triple	100	22	4	1,6	1,4	0,56/0,7/0,86	3, 5, ±5
AD8012	CFA dual	350	2,5	4	12	1,7	2,5	5, ±5
AD4896-2	Dual	230	1	0,5	17	3	3,2	3, 5, ±5
AD8027/8	Single/dual	190	4,3	0,9	6	6,5	1,2/1,91	3, 5, ±5

Valencia&LBNL final decision: higher noise and offset voltage but low power (30 mW/ch) and cost (\$3,48/ch) Initial LBLN prototype: higher performance but also higher power (125 mW/ch) and cost (\$7,8/ch)

Review: NEXT-DBDM FE-SiPM read out (3/4)



Review: NEXT-DBDM FE-SiPM read out (4/4)

Digitized data have been analyzed (Lisa Gerhardt, LBNL) to find out the required sampling rate (and results show that 2-3 MHz is acceptable)

This prototype shows the feasibility of the new readout concept for NEXT-100

NEXT-DBDM

SiPM-FF

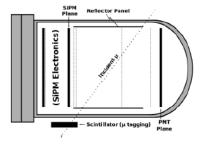
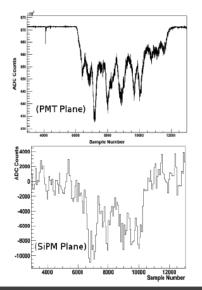
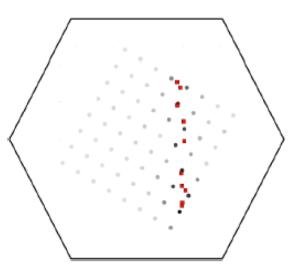




Figure 5: Schematic of the muon tracking test setup for NEXT-DBDM.

Muon tracking

Requirements for NEXT-100

A requirements document is not yet finished, but let's highlight the main desing parameters

Requirements for NEXT-100

A sound front-end design for NEXT-100 should:

Resolve the single photoelectron to ease calibration

The gated integrator allows pe-based calibration
The stretching&sampling approach requires a bypasseable filter
New LBNL analog stage dissipates 30mW/ch in the amplifiers. We could choose other opamps, trading power for noise, in oder to enhance spe discrimination

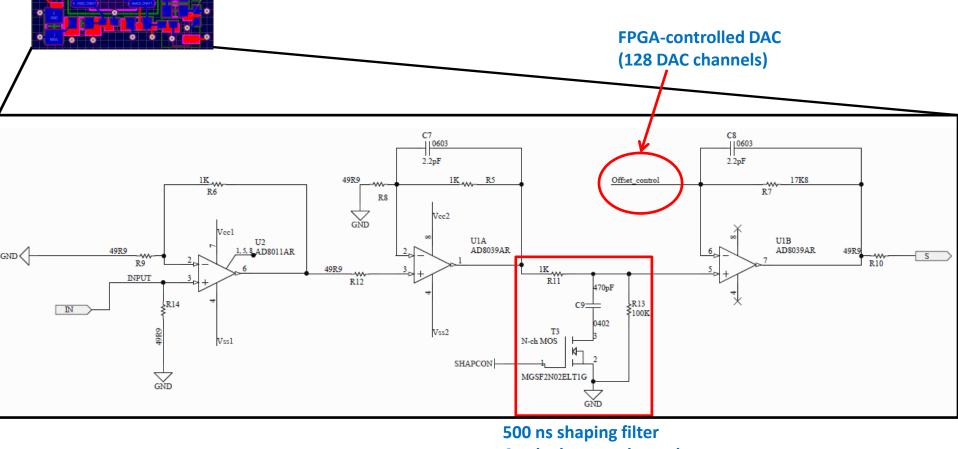
Provide enough time and amplitude resolution (tbd)

□ Have an automatic offset voltage compensation

□ Be able to perform zero suppression on-the-fly and have an event bufffer (see DAQ requirements)

Proposal for NEXT-100 (amplifier circuit)

Use NEXT-DBDM circuit topology, add a switch to bypass the filter and an FPGA-controlled offset voltage adjustment


Technical review & discussions for NEXT-100, Fermilab, Dec. 2012

SiPM-FE

NEXT-100

Proposed amplifier circuit

Final opamps will be a trade off between power, noise and cost (AD8011 & AD8039 optimize power and cost)

Can be bypassed to enhance spe detection

Small PCB area (1,7cm²)

Sampling & offset voltage

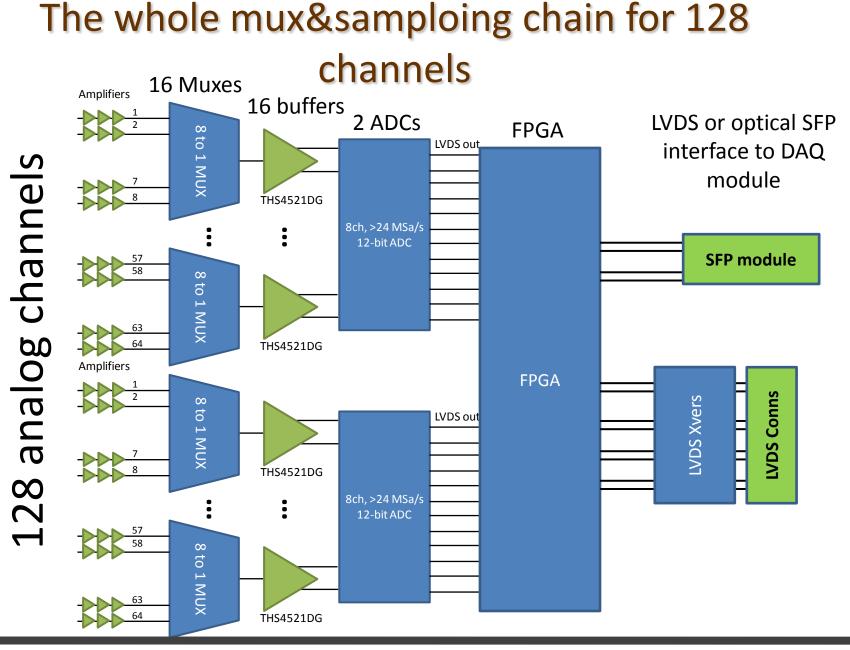
On the signal and its sampling:

- \square RC time constant is approx. 0.5 μs
- **Sampling rate is 2-3 MHz**

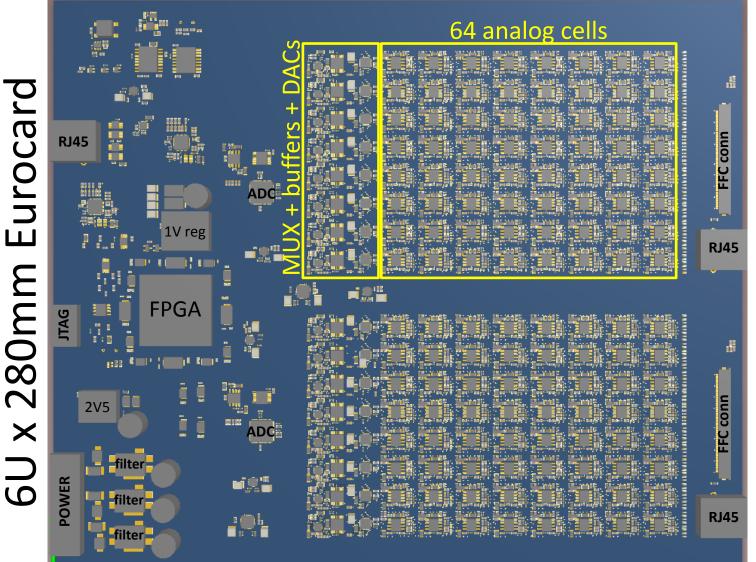
On the offset voltage adjusment: coarse (analog) + fine (digital)

- Coarse automatic offset adjustment with a DAC (at the 3rd stage)
- □ ADC dynamic range is typ. 2V_{pp}
- □ Keep signal dynamic range in approx. 1V_{pp}
- □ Leave the additional ADC range for the residual offset voltage
- Correct the residual offset after digitization (fine adjustment) !!

Proposal for NEXT-100 (front-end board -FEB)


Packing 128 analog stages (amplifiers) and its required multiplexers, buffers, ADCs, FPGA, data transceivers and voltage regulators

SiPM-FF


FEB

SIPM-FE FEB

FEB layout (missing: SFP)

SIPM-FE FEB

Data handling and buffer in FEB

FPGA

estimates signal baseline

automatic control for per-channel coarse offset voltage compensation

automatic fine correction for offset voltage

controls multiplexers and ADCs

u zero-suppresses data (based on configurable parameters)

 $\hfill\square$ timestamps and buffers data

□ sends data to DAQ when a trigger is received

allows monitoring&control from DAQ module

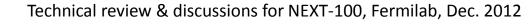
□ Virtex-6 LX130T, 195T or 240T in BGA784 (footprint compatible)

□ same FPGA as in ATCA FEC (DAQ module)

□ internal dual-port buffer size: 9504/12384/14976 Kb

□ This allows 6336/8256/9984 samples/ch buffer depth

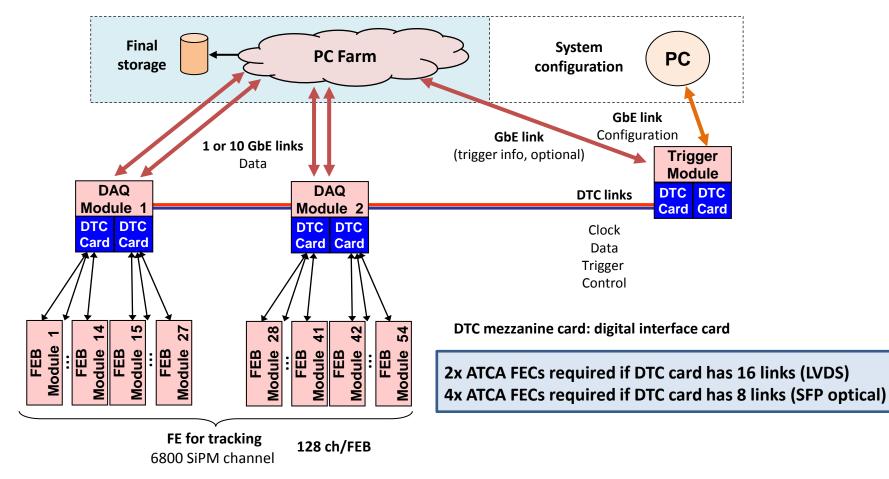
□ At 2MHz sampling, 2 chamber drift times, one full raw event needs 6400 samples/ch


Uplink throughput

FEB

SiPM-FE

LVDS: 400 Mb/s (as used in NEXT-DEMO)


□ SFP with simple protocol for clock, trigger, slow controls and data: up to 1Gb/s (currently under development, CERN)

Proposed FE&DAQ architecture for NEXT-100 (SiPM tracking plane partition)

