The DAQ system

- The DAQ system: RD51's SRS review
- Classic flavor of SRS
- ATCA flavor of SRS

Outline

- A proposed DAQ architecture for NEXT-100
- Trigger system overview

RD51's SRS

RD51: CERN approved R&D programme for "Development of Micro-Pattern Gas Detectors Technologies"

SRS: Scalable Readout System

• A front-end independent (at least very flexible), portable, scalable, multichannel readout system developed for RD51 users. Initially developed by CERN-PH-AID and NEXT

• A growing base of users and developers helps to reduce development, production and maintenance costs

SRS comes in two flavors:

SRS review

- Classic: 6U Eurocard FECs in a 19" crate
- ATCA: industry standard, certified (coming in Q1 2013)

The big clients (ATLAS, CMS) want to go ATCA, so this becomes the right bet for us...

SRS Classic

- 6U Eurocard FECs in a 19" crate: cooling and power not included in the crate

SRS classic

- Cheap solution (crate costs almost nothing, FEC ~2.5k€, 16-ch ADC card ~700€)
- Currently produced by a Greek company (Prisma) for CERN stores, but we made, and we can still make, our own production batches (design rights have not been transfered!)

SRS Classic

Technical review & discussions for NEXT-100, Fermilab, Dec. 2012

DAO

SRS Classic – the FEC module

SRS classic

Current FEC

- Virtex-5 LX50T FPGA
- 256 Mbyte DDR2 buffer (16 bit interface)
- 1x SFP for GbE interface
- Switched regulator for FPGA core voltage
- Schematics, PCB design and some production batches: NEXT

Features for the next version (in ATCA flavor)

- Virtex-6 LX130T/195T/240T FPGA
- Up to 4 Gbyte DDR3 buffer (64 bit interface)
- Dual/Quad SFP+ interfaces (allows Ethernet slows controls)
- Linear regulators for FPGA core voltage (required for operation in high magnetic field)

SRS Classic – FEC+adapter card

This solution (base FEC + adapter cards) allows to interface any front-end to a common DAQ by simply using the right adapter card

SRS Classic – Adapter cards

SRS classic

CERN ADC-Card, can be used as:

- 16ch 12-bit 50-MHz ADC card
- Interface to the RD51 APV25 ASIC hybrid
- Interface to the RD51 Beetle ASIC hybrid

Application in NEXT-DEMO: PMT readout

NEXT LVDS card, 16xRJ45, 4xLVDS each Used as:

- Interface to digital front ends (SiPM)
- Clock and trigger interface & distribution

SRS Classic – the SRU unit for large systems

One SRU will arrive in Valencia before Christmas in order to practice:

- 10 Gb Ethernet links to DAQ, DDR3 buffer, Virtex-6 features
- Possibilities: tracking plane readout with new electronics in NEXT-DEMO++, trigger module

SRS Classic Reading out 48 PMTs in NEXT-DEMO

Clock, trigger and commands sent from Trigger FEC to DAQ FECs Trigger FEC communicates with a PC via GbE

Front view

Rear view

SRS ATCA

SRS-ATCA partners*: EicSys, UPV-Valencia, IFIN-HH-Bucharest, CERN

- Remaps current SRS cards into ATCA format and adds new features
- Cooling and power included in a certified crate
- Required by large experiments (CMS, ATLAS)
- More expensive solution, designed and produced by a German company
- Our special RD51 developer and early user status (together with ATLAS and ORNL) gives us access to reduced prices and influence on the final design
- Coming in Q1 2013

SRS ATCA

SRS ATCA – the FEC module

- Dual FEC mode: each FPGA controls a mezzanine, DDR3 bank, DTC conn. and 2x SFP+
- Single FEC mode: FPGAs are interconnected

SRS ATCA

A possible architecture for NEXT-100 Requirements

- 6800 SiPM channels

- 54x 128-ch FE cards
- New clock distribution to reduce the number of cables
- New mode of operation: Trigger mode with internal buffer at the FE level
- 64 PMT channels
- Dead Time < 2%

NEXT-100

- **Zero Suppression** to reduce the event size
- Maximum total waveform length : **3.2 ms** 2 x chamber size
- Maximum throughput (goal): **70-80 MBytes/s?**

A possible architecture for NEXT-100

Zero-suppression

- We cannot send to disk raw data at the target event rate (10Hz):
 - ~600 MByte/s could be reached (>400MByte/s in the SiPM plane!)
 - Zero suppression is needed!
- So, what can be done?
 - Test Mode:
 - PMT plane: Raw data
 - SiPM plane: Zero-suppressed data
 - Trigger rate limited to 1-2 Hz
 - Normal mode:
 - Higher trigger rate: up to 10 Hz
 - PMTs:

NEXT-100

- Events of interest (in a defined range of energy): Raw mode data
- Rest of events: zero-suppressed data
- SiPM plane: Zero-suppressed data

A possible architecture for NEXT-100 Simulations

- A VHDL model for the NEXT-100 DAQ system has been written to simulate the **Normal Mode** of operation in the worst case. Assumptions:
 - Treatment of "interesting events": 1% of the events
 - Total waveform length of 3.2 ms
 - Trigger rate of 10 Hz
 - Sampling rates:
 - PMT channels: 40 MHz
 - SiPM: channels: 6 MHz (although it may be 2-3 MHz in the final HW)
 - Zero-suppressed data reduction factor (pure speculation) :
 - PMT data: 1/4
 - SiPM data: 1/20

NFXT-100

A possible architecture for NEXT-100 Simulations

• Conclusions:

NFXT-100

- Normal mode of operation as described could satisfy the needs of NEXT-100 in terms of dead time
- At least 2Gb/s throughput per FEC is required (so, 10GbE in the new ATCA FEC will be welcome)
- A double buffer scheme reduces considerably the dead time (so, fast DDR3 buffers in the new ATCA FEC is a must)
- Giving priority to events of interest reduces the dead time for this type of events to almost zero

A possible architecture for NEXT-100 Single ATCA chassis with 5x FECs

NEXT-100 DAQ – ATCA Architecture

Trigger architecture

- (1) PMT DAQ modules send trigger candidates to the Trigger module
- (2) A configurable trigger algorithm takes a decision
- (3) A trigger accept is distributed to all DAQ modules

DAO

Trigger candidates

- Configurable (in red):
 - Channel for trigger on/off
 - Auto-baseline calculation on/off
 - Trigger event type: 1 or 2
 - Max and min energy
 - Relative max amplitude threshold
 - Relative baseline deviation
- Internally processed (in blue):
 - Baseline
 - Energy of the pulses
- Algorithm:
 - 1. Channel ON?
 - 2. Pulse bellow baseline deviation threshold? → Process event!
 - 3. Event max. amplitude < max. amplitude threshold?
 - 4. Event time duration < max. time threshold?
 - 5. Event energy among energy threshold?
 - 6. If 1-2-3-4 and 5 → Trigger candidate!
- After detection, trigger candidate info is sent to the TRG FEC: Initial time of the event (FT), channel number and event type

Trigger

DAC

Internal trigger mode of operation (For every PMT channel)

Trigger algorithm

TRG FEC processing algorithm

- <u>Configurable (in red):</u>
 - Pre-trigger and maximum trigger frequency
 - Trigger mode:
 - External
 - Internal simple (event type 1)
 - Internal double (event type 1 and 2)
 - Calibration (external and internal)
 - Trigger candidates for a trigger (N1 and N2)
 - Coincidence window size (CW1 and CW2)
 - Max. time between event type 1 and 2
- Internal trigger algorithm:

Trigger

- 1. Number of trigger candidates (type 1) > N1?
- 2. Trigger candidates time diff (type 1) < CW1?
- 3. If 1 and 2 and Internal simple mode → Trigger accept! → If Internal double mode, go to 4:
- 4. Number of trigger candidates (type 2) > N2?
- 5. Trigger candidates time diff (type 2) < CW2?
- 6. Time between trigger1 and 2 < Max. time double trigger?
- 7. If 1-2-3-4-5 and $6 \rightarrow \text{Trigger accept!}$
- After detection, trigger accept info is sent to the DAQ: Trigger mode, trigger counter, CT (coarse Timer) and FT (Fine Timer)

