

Report on the LHC Accelerator, HL LHC and the US Accelerator R&D Program

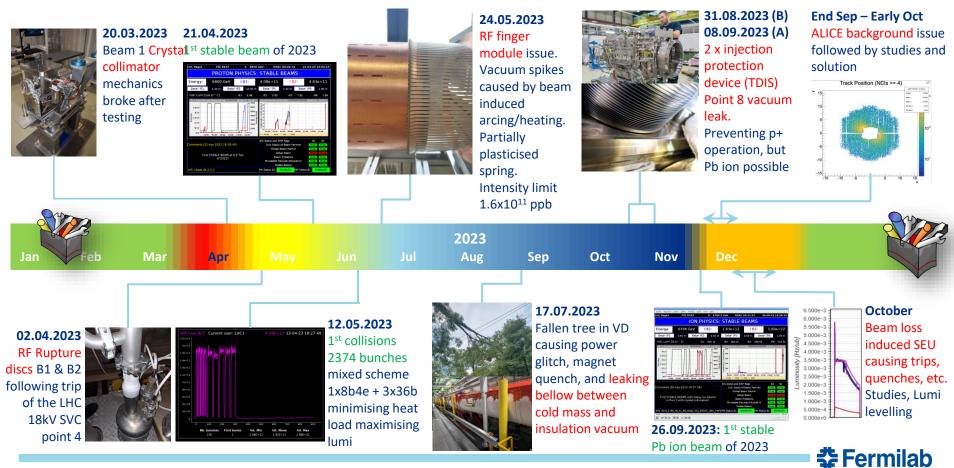
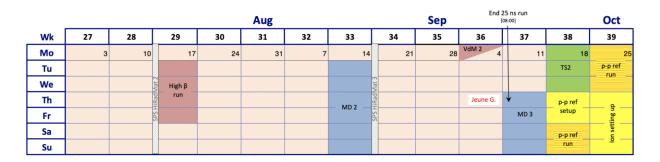

Maria Baldini, FNAL US LUA Annual Meeting 12-15 December 2023

Table of contents

- LHC status and plans
 - 2023 summary and status
 - 2024 plan
- HL-LHC upgrade long term plan
 - HL-LHC AUP: status and milestones
- Future colliders
 - R&D work at FNAL



2023 LHC Machine Main Events Timeline

Courtesy of R. Steerenberg

2023 LHC Schedule Q3

				Aug					Sep					Oct
Wk	27	28	29	30	31	32	33		34	35	36	37	38	39
Мо	3	10	17	24	31	7	14		21	🐥 28	collisions injection 4	Highβrun <mark>1</mark>	High β run 18	25
Tu											High β run		p-p ref	
We		Mat 2						Mat 3		Machine checkout	VdM 2		cryo 🍎 reconfig	lon ru
Th		Rad		Cold m	Unschedul ass - insulation	led stop vacuum leak re	pair	iRadi	tests	Recomm with	Jeune G.		÷	- Pb Ic
Fr		SPS F						SPS F	ering 1	beam	– High β run –	High β run	ting u	VIP 名 우
Sa									Powe	High β setup	riigii p run -		n set	5
Su										p-p ref setup			<u> </u>	

- Proton run was cut short
- Machine Development
 sessions were cancelled
- The re-start in end of August was efficient
- All activities squeezed in September period – very challenging
- p-p reference run to be scheduled in 2024
- Pb ion period extended, but with a challenging start

🚰 Fermilab

Courtesy of R. Steerenberg

Year 2023 in summary

- The Injectors complex is running well with good beam performance and availability
 - HL-LHC beam parameters demonstrated
 - Slip-stacking for Pb ion commissioned successfully
- LHC had a challenging year working in unchartered territory for Protons and Pb ions
 - Unpresented stored proton beam energy and very efficient performance ramp-up
 - Serious issues caused substantial down time Proton run was cut short to 49% of initial time schedule
 - Pb ion run with double the number of bunches came with more challenges than anticipated – lately very good running
- First 2024 beam expected in the LHC on 11 March
 - 2024 baseline schedule available.

Courtesy of R. Steerenberg

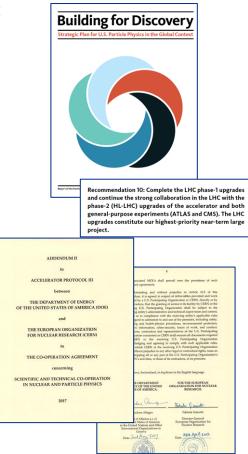
2024 version 0.8b

We 1st May viss Grid Interv. TS1 Th Ascension Interleaved Fr VdM commissioning MD 2 program & Sa spare ntensity ramp up Su

The 5.5 weeks of Pb ion running until LS3 to be share over 2024 and 2025 with a Pb ion run at the end of each year.

The Oxygen ion run to be moved from 2024 to 2025

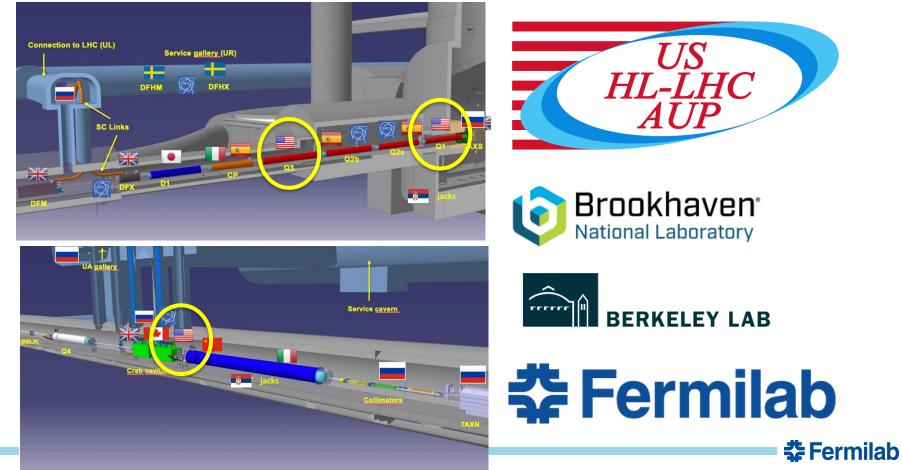
Same as for version 0.8a apart from the p-p reference run that has moved to the end of the 2024


Table of contents

- LHC status and plans
 - 2023 summary and status
 - 2024 plan
- HL-LHC upgrade long term plan
 - HL-LHC AUP: status and milestones
- Future colliders
 - R&D work at FNAL

Context: DOE and HL-LHC

- The 2014 P5 High Energy Physics (HEP) strategic plan called for continued involvement in the LHC, including full participation in the high luminosity upgrade of the LHC (HL-LHC) and its detectors.
 - Support reinforced by 2023 P5 Report
- DOE-HEP has been actively developing an enhanced partnership with CERN since the P5 report was issued.
 - An international cooperation agreement with CERN has been signed and protocols on neutrinos, the LHC experiments, and contributing to the HL-LHC accelerator upgrade are complete.
- Following DOE-CERN Cooperation & Protocol Agreements in 2014 & 2015, in April 2017 an Addendum to the agreements further specified the HL-LHC Upgrade activities of mutual interest to the Parties ® *spawned 413.3b HL-LHC AUP*

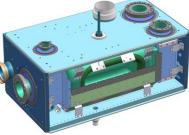


US Contribution to HL-LHC

- HL-LHC: from 300 fb⁻¹ to 3000/4000 fb⁻¹
- LARP (DOE supported R&D Program) established the necessary technology (Nb₃Sn) for the HL-LHC Focusing Magnets and Crab Cavities

The Inner Triplet & Matching Section regions

HL-LHC AUP Deliverable Scope Technical Details



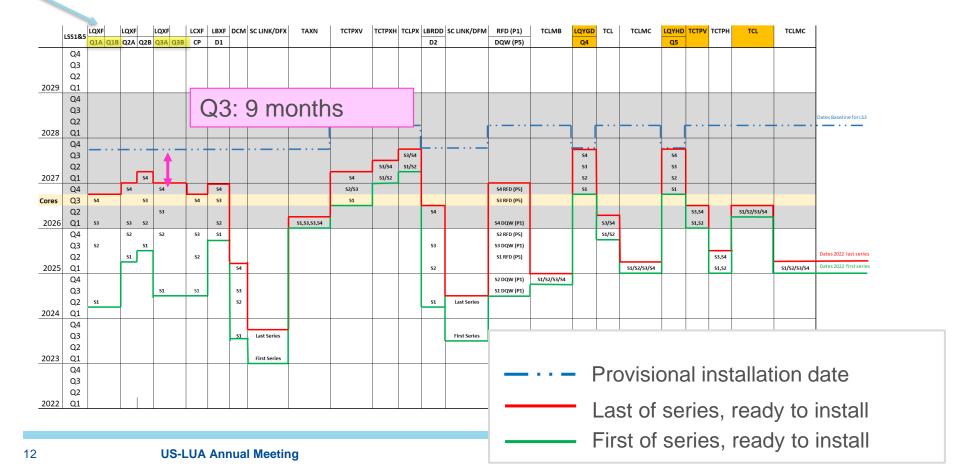
Dressed RFD Cavity •

(10 Dressed Cavities & Ancillaries)

Bare RFD Cavity

Dressed RFD Cavity (front wall removed to show internal components)

RF Ancillaries


- Coil fabrication: BNL and
- Magnet assembly: LBNL
- Magnet vertical test: BNL
- Cold Mass + Cryoassembly fabrication: FNAL

Fermilab

Horizontal test: FNAL

US-LUA Annual Meeting

Equipment readiness for tunnel

HL-LHC AUP Critical Decision (CD) Timeline

✓ CD-0: Achieved (April 2016)

Approved Mission Need Statement

✓ CD-1/3a (Oct. 2017)

Approved Cost and Schedule Range

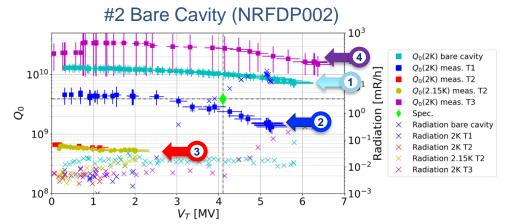
Approval for full procurement of Nb₃Sn strand.

✓ CD-2/3b (Feb. 2019)

CD-2 approval of performance baseline

CD-3b for construction approval of fraction of coils and magnets parts

✓ CD-3 (Dec. 2020)


Construction approval of remaining items (all coils and magnets, cold mass and cryo-assemblies, RFD cavities)

✓ CD3 Rebaseline (Dec. 2022)

Approval for increased TPC to account for COVID/Abnormal Escalation Impacts

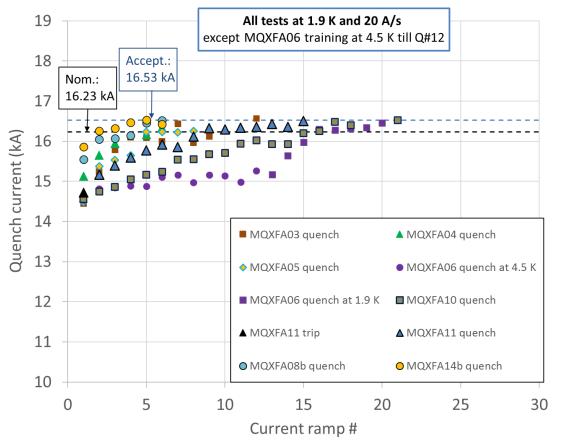
Technical Status – Crab cavities

- This cavity exceeded acceptance requirements in the "bare" state at FNAL in 2021 (#1 above).
- Multiple tests at Jlab this year were hindered by challenges with <u>vacuum leaks</u> and <u>RF losses (#2 & #3 above)</u>.
- Through a collaborative effort, we were able to progressively understand the root causes and <u>implement corrective actions</u>, which culminated finally in a <u>successful test in August (#4 above)</u>.

Technical Status – Crab cavities

End-Caps

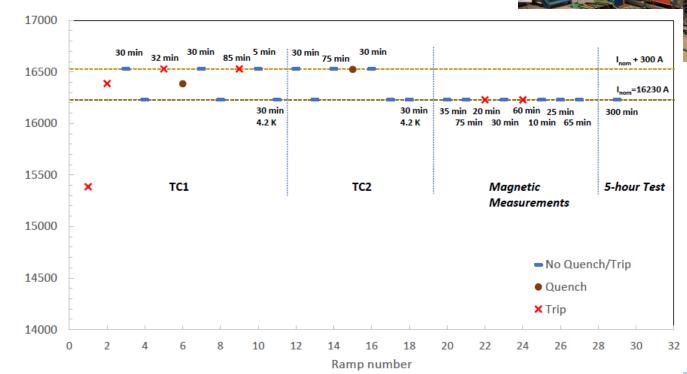
Pole Corners


Deflecting poles

RFD Series - Manufacturing at ZRI

- Series cavity fabrication in full swing, progressing not without surprises, with NCRs being managed successfully.
- Raw materials yield within estimates despite having to discard 6 poles due to residual issues with forming.

Technical Status – MQXFA Magnets


US-LUA Annual Meeting

- 9 Accepted Magnets after vertical test at BNL out of 12 tested
- 16 Magnets produced (~60% of deliverables), coils at ~95%, cables at ~99%
- MQXFA05 underwent endurance test with 50+ induced quenches.
- MQXFA08b 1st reworked magnet successfully tested

🚰 Fermilab

LQXFA01 quench performance

Test performed successfully at FNAL

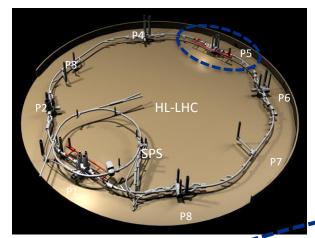
Fermilab

H. Kung visit to FNAL

US-LUA Annual Meeting

LQXFA/B-01 Delivery

• LQXFA/B-01 at CERN, being prepared for Horizontal Test in SM18.



Delivery Dates to CERN

	Agreed Early	uly 2023 Success Oriented	Agreed Late
	Delivery Date	Schedule	Delivery Dates
Q1/Q3 Delivery 01	Nov-23		Oct-24
Q1/Q3 Delivery 02	Jun-24		May-25
Q1/Q3 Delivery 03	Aug-24	Oct-24	Jul-25
Q1/Q3 Delivery 04	Nov-24	Jan-25	Oct-25
Q1/Q3 Delivery 05	Mar-25	May-25	Feb-26
Q1/Q3 Delivery 06	Jun-25	Aug-25	May-26
Q1/Q3 Delivery 07	Aug-25	Oct-25	Jul-26
Q1/Q3 Delivery 08	Nov-25	Jan-26	Oct-26
Q1/Q3 Delivery 09	Apr-26		Mar-27
Q1/Q3 Delivery 10	Aug-26		Jul-27
Cavity Optimistic Deli	very Dates		
	Agreed Early Delivery Date	July 2023 Success Oriented Schedule	Agreed Late Delivery Dates
Cavities 01 & 02	May-24		Apr-2
Cavities 03 & 04	Jul-24	Sep-24	Jun-2
Cavities 05 & 06	Aug-24	Nov-24	Jul-2
Cavities 07 & 08	Oct-24	Jan-25	Sep-2
Cavities 09 & 10	Nov-24	Mar-25	Oct-2

HL-LHC IT STRING: P5L

The **scope** of the IT STRING is to represent, as best as reasonably achievable in a surface building, the various operation modes to **STUDY and VALIDATE the COLLECTIVE BEHAVIOUR** of the different systems of the HL-LHC's IT zone (magnets, magnet protection, cryogenics of the magnets andof the superconducting link, magnet powering, vacuum, alignment, interconnections between magnets, and the superconducting link itself).

CA installation end 2024

The first important results on the collective behaviour is expected at the end of the first thermal cycle: by May 2026.

Table of contents

- LHC status and plans
 - 2023 summary and status
 - 2024 plan
- HL-LHC upgrade long term plan
 - HL-LHC AUP: status and milestones
- Future colliders
 - R&D work at FNAL

Future Colliders and R&D

 A major effort was made during "Snowmass 2021" to highlight the U.S. HEP community interest in Future Colliders

Various e+e- Higgs Factory options and multi-TeV parton Center-of-Momentum (pCM) hadron colliders and muon colliders were studied and documented.

See e.g., <u>https://arxiv.org/abs/2203.08088</u> and references therein.

Strong resurgence of interest in ~10 TeV muon collider!

A targeted national collider R&D program was proposed to enable studies/R&D: See <u>https://arxiv.org/abs/2207.06213v1</u>

The Snowmass report strongly endorsed the community's interest in early U.S. engagement in future collider projects planned abroad (FCC-ee, ILC) and the community's ambition to host a high energy collider in the U.S. (e.g., a Muon Collider) Courtesy of Pushpa Bhat

Future Colliders in the P5 2023 Report

The just released P5 report (<u>https://science.osti.gov/-</u>/<u>/media/hep/hepap/pdf/Reports/P5Report2023_120123-DRAFT-to-HEPAP.pdf</u>) strongly supports the U.S. Community's aspirations on Future Colliders, particularly emphasizing vigorous R&D for a 10 TeV pCM Muon Collider!

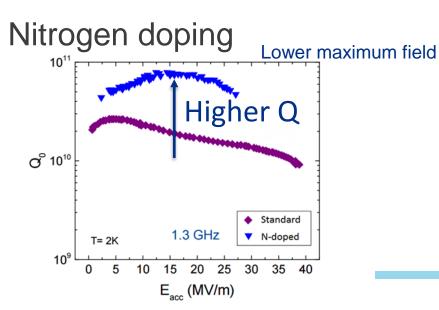
Recommendation 2c endorses an off-shore Higgs factory and urges the US to actively engage.

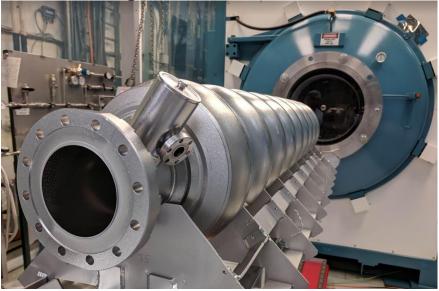
Recommendation 4a supports vigorous R&D toward a cost-effective 10 TeV pCM collider R&D, with a goal of being ready to build major test and demonstrator facilities within the next 10 years.

Recommendation 4g asks to develop plans for improving the Fermilab accelerator complex that are consistent with the long-term vision of the report, including neutrinos, flavor, and a 10 TeV pCM collider.

Area Recommendation 10 bolsters support for Collider R&D:

"To enable targeted R&D before specific collider projects are established in the US, an investment in collider detector R&D funding at the level of \$20M per year and collider accelerator R&D at the level of \$35M per year in 2023 dollars is warranted."


Courtesy of Pushpa Bhat


Summarizing SRF needs for potential future colliders

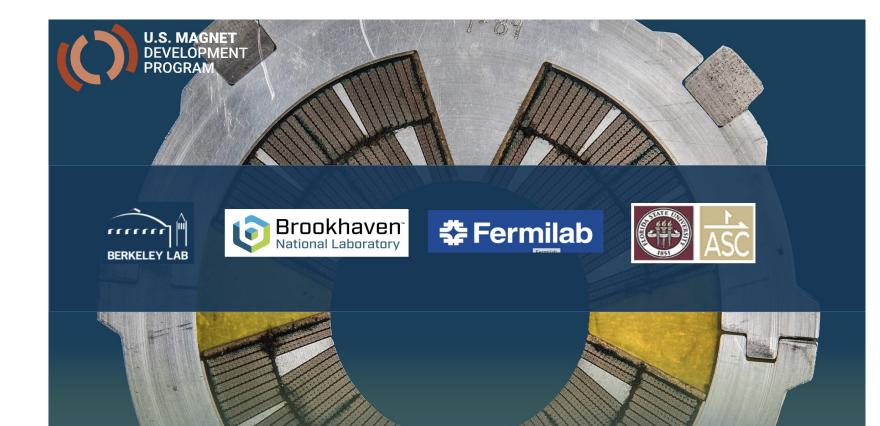
In general . . .

- High gradient, high efficiency SRF cavities
- High gradient NCRF
- High efficiency power sources

Nb₃Sn cavities

Summarizing magnet needs for potential future colliders

- In general . . .
 - High field dipoles
 – up to 17T (and perhaps 20 24T)
 - Large aperture interaction region quadrupoles
 - Sustainability higher operating temperatures
- Muon Collider (in addition to above)
 - Large apertures (~ 160mm)
 - (Very) fast ramping magnets
 - Large aperture, high field solenoids (> 30T)
 - Operation in high radiation, high heat load environment


Challenges

- He cost/availability
- High stresses
- High radiation environment
- Sustainability power consumption

Opportunities

- HTS
- Fusion driving REBCO cost

industrialization

Nb₃Sn magnets

15 T dipole; stress management (SM) structures for coils in magnets above 16T (16-20 T)

HTS

- Specially designed structures for REBCO coils
- Bi- 2212 SM R&D

Technology R&D

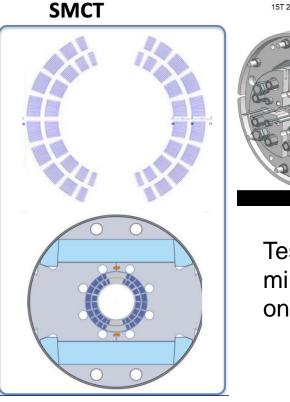
- Training and diagnostics fibers as strain gauges, training studies and QCD device
- Instrumentation and quench protection new accurate quench antennas, fibers for HTS QP
- Material studies new epoxy and insulation material tests, high-Cp materials in cable and epoxy
- Modeling and simulation new tools (AI for Nb₃Sn training prediction)

Current Magnet R&D activities at Fermilab

• The R&D topics include:

Nb₃Sn conductor

- Artificial Pinning Centers (APC) and High-Cp optimization and

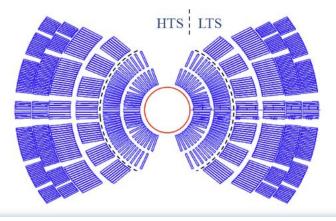


Exploring stress management configurations: Nb₃Sn

•Stress-managed Cosine Theta:

- o 2 layers
 - Bore field of 11 T
 - Bore diameter: 120mm

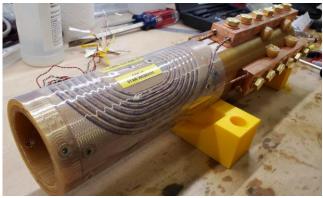
SMCT 2L outer coil 15T 2L inner coil 15T 2L inner


Test at 1.9 K of 4-layer mirror magnet is ongoing

- SMCT 2L outer coil
- 15 T 2L inner coil

Nb3Sn: High field dipole

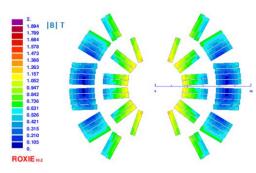
14.5 T Nb₃Sn dipole Part of US Magnet Development Program (MDP)



Goal: Hybrids magnets To reach 20 T

Bi-2212 and REBCO accelerator magnet R&D

REBCO



HTS dipole (60 mm clear bore) has been fabricated for Hybrid superconducting magnet and will be tested in January 2023

CORC/ STAR wire: selection of high-performance tapes/ very expensive

- Test in liquid Nitrogen was successful
- Test in liquid He is under preparation

REBCO tape stack: leverage fusion REBCO tape production

HTS-Bi-2212 insert magnetic design

Conclusion: LHC and HL-LHC

LHC:

•First 2024 beam expected in the LHC on 11 March: 2024 baseline schedule available

- The 5.5 weeks of Pb ion running to be shared over 2024 and 2025 with a Pb ion run at the end of each year.
- The Oxygen ion run to be moved from 2024 to 2025
- At present there are discussions on the timing of the p-p ref run remaining

AUP HL-LHC

•Crab cavities:

- Pre-Series cavities completed at Zanon with improved quality compared to prototypes. Cold tests ~ Jan-Feb 2024.
- Series cavities reaching peak production without showstoppers.

•Magnets and Cryo-assemblies:

- Magnet assembly at peak production at LBNL. Coil fabrication at BNL and FNAL to be completed shortly.
- MQXFA07b is being tested at BNL. MQXFA15 at BNL as well.
- MQXFA16 (untested) at FNAL for CM05
- LQXFA/B-02 Cold Mass in final steps of assembly
- LQXFA/B-01 at CERN.

Conclusions

The 2023 P5 report aligns strongly with the U.S. HEP community's aspirations and recommends vigorous R&D towards future colliders, emphasizing to plan for a 10 TeV Muon Collider at Fermilab.

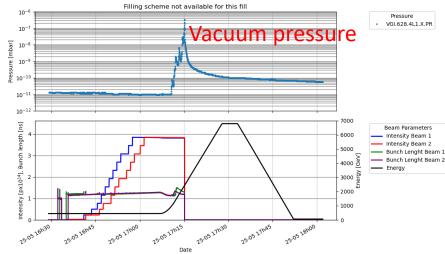
Nb₃Sn Technology is mature but not easy

- Needs to be more robust and affordable.
- 16 17T operating field is a real challenge for future hadron colliders
- Demonstrate technology for large-scale accelerator deployment: this is the time to develop cost-effective design & technolog

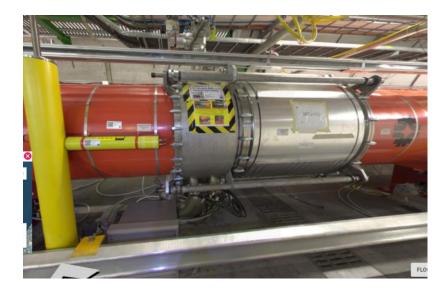
HTS is at its infancy but has a great potential and many challenge:

- Enabling technology for magnets with fields > 16 T (magnet architecture/ conductor degradation)
- Higher temperature margin and stability (quench detection and protection)
- Operation at higher temperature (dry-cooling, He gas cooling, LH2, LN2): find optimum temperature

Collaborations / Partnerships / Members [19.5pt Bold]



Fill 8828: 2023-05-25 16:29:00 - 2023-05-25 18:02:00



Fermilab

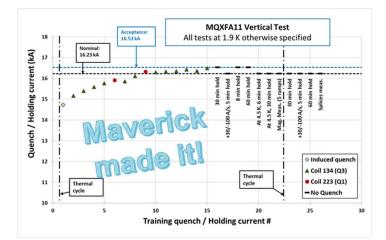
Vacuum pressure spikes during the ramp with beam dump due to losses

- Limiting bunch intensity to 1.6x10¹¹ p/b
- Will partly be addressed during Year End Technical Stop 23-24

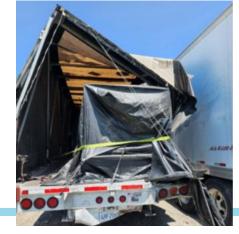
- A small hole (1 mm²) in an edge welded bellow with major consequences
- Thinking out of the box by expert teams allowed for a restart in 2023
- ³⁶ US-LUA Annual Meeting
 Photo story in CERN Bulletin

Nb₃Sn accelerator magnet: a road map for success

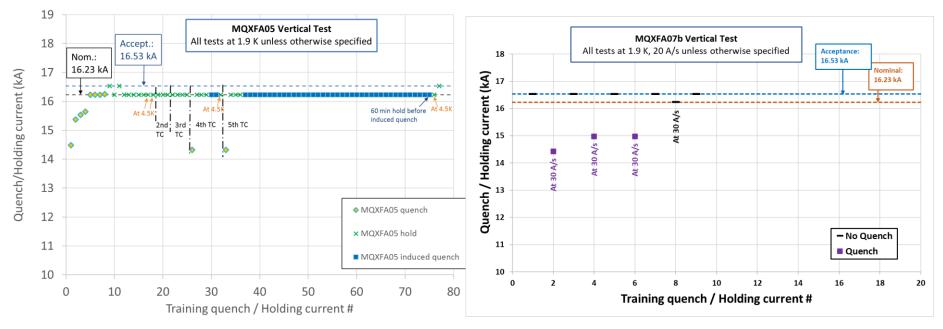
20+ Yrs


- Full Length Prototypes (3+
- Short Models Basic R&D (conductor, other materials, magnetic & structural design, ...)

In this field range (12-14 T) <u>now</u> we can develop cost-effective design & technology


MQXFA11 truck incident

- The truck transporting the MQXFA11 magnet from LBNL to BNL was rear ended by another truck on 7/20/22.
- The main hit took place on the right back corner. During the incident the truck rear axle disengaged as displayed below.
- The magnet was moved to FNAL on 7/28/22. Upon arrival a visual inspection was performed followed by electrical checkout, metrology survey, analysis of the fiber optic sensors and accelerometer data analysis
 - Max shock: 6 or 10 g vertical (depending on the device in the same accelerometer unit)
 - Duration: 5 ms
- All tests and analyses were OK. Magnet was shipped to BNL



No Personal Injury to driver

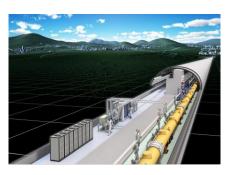
Technical Status – MQXFA Magnets

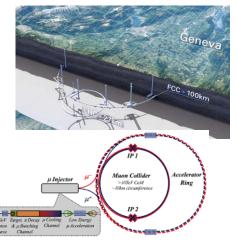
U.S. Engagement in Global Projects

The International Linear Collider

U.S. scientists engaged in efforts of the ILC-IDT (ILC International Development Team) SRF R&D for ILC main linacs and ILC++

Polarized Positron Source and Damping Ring, ..


- Future Circular Colliders (FCC-ee/hh)
 - CERN conducting Technical and financial feasibility studies; Final report by ~2025-26
 - CERN/DOE agreement signed in Dec. 2020


Opportunities for engineering design studies, beam physics studies, High Q_0 SRF R&D, magnet R&D,..

Muon Collider Collaboration

Intense work in progress in the International Muon collider Collaboration; US community engag

Machine scenarios, beam induced background, neutrino radiation, demonstrator facility, detector/physics studies

莽 Fermilab

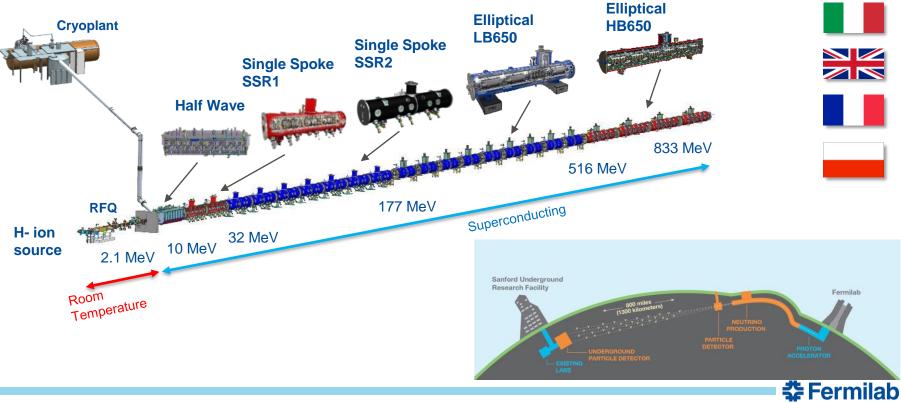
Exploring formal U.S. engagement

Fermilab APS TD activities and R&D

- Projects
 - Mu2e
 - Proton Improvement Project II (PIP II)
 - Accelerator Upgrade Project (AUP)
- Superconducting RF R&D –
- Superconducting Magnet R&D
 - Nb₃Sn stress limiting structures
 - High Temperature Superconductors (Bi-2212 and REBCO)
 - Conductor developments

Accelerator Technology: 2023 Fermilab highlights

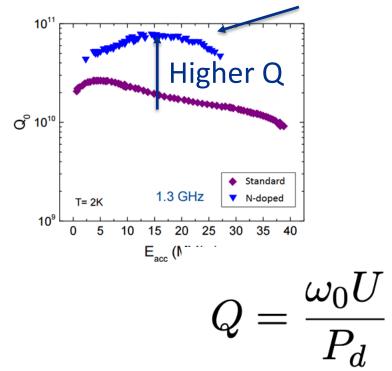
Nb₃Sn Interaction Region Quadrupoles for Hi-Lumi LHC Upgrade


Mu2e: Transport solenoid completed and moved to experimental hall

Accelerator Technology: 2023 Fermilab highlights

PIP-II linac is technically complex, state of the art superconducting RF accelerator

۲



Superconducting RF: Nitrogen Doping

Lower maximum field

Nb₃Sn Cavities for Particle Accelerators

- Nb has long been the material of choice for SRF accelerators
- Nb₃Sn is under development, and we have shown that it can achieve high Q even at ~4 K (Nb is typically 2 K)
- Immediate promise for 'compact accelerators'
- With continued R&D, Nb₃Sn is predicted to exceed Nb maximum field
- Fermilab R&D: first Nb₃Sn 9cell cavity, new record Nb₃Sn CW accelerating gradient

