

ALICE report

Anthony Timmins (ALICE-USA coordinator)

US LUA 2023 meeting

QCD in extreme conditions

Lattice QCD predicts **rapid change in hadronic thermodynamic properties** at critical temperature $T_c \approx 155$ MeV

Formation of quark-gluon plasma (QGP)

✓ Quarks & gluons no longer confined
 ✓ Chiral symmetry restored → loss of dynamical quark mass

LHC heavy-ion collisions provide conditions that greatly exceed QGP critical parameters...

.

Hot QCD, PRD 90 (2014) 094503

Worldwide QGP studies

QGP at LHC has **highest temperatures** at $\mu_b \approx 0$ MeV \checkmark Similar to early universe ~10⁻⁶ seconds after big bang

Ongoing high energy nuclear collisions at RHIC → new sPHENIX detector and STAR

✓ Other programs at lower energies (e.g. SPS, FAIR)

Large acceptance and world leading particle identification probes all aspects of QGP behavior √ Broad physics program utilizing heavy-ion and pp collisions

ALICE collaboration and US leadership

Largest heavy-ion experiment in world terms of membership

US scope \rightarrow 13 institutes & ~120 members

- ✓ Major contributions to EMCAL construction (Runs 1 & 2), TPC and ITS upgrades (Run 3)
- ✓ Two Tier-2 grid centers at LBNL and ORNL →
 New analysis facility at LBNL
- ✓~6% of total members and involved in ~25% of ALICE physics publications

https://sites.google.com/lbl.gov/alice-usa

40 countries, 171 institutes, 2020 members

First signal!

https://home.cern/news/news/experiments/alice-bags-about-twelve-billion-heavy-ion-collisions

Status of data taking in Run 3

Hugely successful heavy-ion run this year → recorded 40x times data than Runs 1&2 courtesy of new continuous readout TPC

 \checkmark Taken ~30 pb of pp data \rightarrow 500x times more than Runs 1&2 with greatly improved track resolution

ALICE

Shinning light on the nucleus

https://home.cern/news/news/physics/alice-shines-light-nucleus-probe-its-structure

Coherent J/ Ψ cross section in Ultra Peripheral Collisions (UPC) mirrors gluon distribution at low x \checkmark Clear suppression for nuclear cross sections at x << 10⁻²

Long sought after evidence of saturation of nuclear gluon PDF (GG-HS) or other effects (LTA, EPS09)?

²⁰⁸Pb neutron skin depth with ALICE data

Large neutron skin Δr_{np} leads to more diffuse and spherical QGP \rightarrow reduces QGP flow \checkmark Bayesian analysis of v₂ and $\langle p_{\rm T} \rangle$ ALICE flow data offers **competitive constraints on** Δr_{np} (Pb) \checkmark Relevant for neutron star equation of state...

US LUA 2023 meeting

QGP suppression of hidden charm

Quarkonia production probes QGP on sub fm scales → suppression in heavy-ions from QCD screening

 $\checkmark\Psi(\rm 2S)$ size ~0.4 fm roughly twice that of J/ $\!\Psi$

✓ Clear indication of larger Ψ (2S) suppression \rightarrow **QGP permeates smallest scales of parton interactions**

Jets are highest momentum probes of a QGP \rightarrow finest interval P_{T} and $P_$

✓ First observation of enhancement of away-side jet yield at low- p_T in Pb-Pb collisions

✓ Described by QGP models of jet-medium interactions

Thresholds of QGP formation

Discovery of QGP-like effects in high multiplicity pp and p-Pb collisions major finding at LHC
 ✓ Recent ALICE results demonstrate QGP flow behavior persists towards lower multiplicities

Transparency of the milky way with ALICE

Nature Physics 19 (2023) 61–71

Novel approach uses ALICE detector as target to measure anti-He³ cross section

✓ Sensitive to dark-matter (DM) interactions → specific DM profile implies transparency ~50%

Anthony Timmins

https://home.cern/news/news/physics/alice-estimates-how-transparent-milky-way-antimatter

Discovery of QCD dead-cone effect

First direct observation of **gluon radiation suppression for charmed jets** in pp collisions ✓ Fundamental feature of QCD and direct observation of non-zero (Higgs!) mass of charm quark

Pushing identified hadron production to limits

 ${\rm \pi^{0}}\,{\rm measured}\,{\rm up}\,{\rm to}\,p_{\rm T}\sim 200\,{\rm GeV/c}$ using in pp and p-Pb collisions using ALICE EMCAL

Suppression of meson production at low- $p_{\rm T}$ in p-Pb consistent with gluon saturation or nuclear shadowing

No sign of energy loss at high- $p_{\rm T}$

✓ Search for QGP-like jet-medium interactions in small systems continues...

https://cerncourier.com/a/light-neutralmesons-probed-to-high-pt/

US LUA 2023 meeting

A. Schmier, Fri. at 8.40 am

Forward Calorimeter (FoCal) and wafer-thin cylindrical ITS3 to be installed

✓ITS3 increases precision for heavy-flavor and electromagnetic probes in large & small systems

✓ FoCal offers deepest explorations of proton/nuclear structure & complimentary to future EIC studies

Anthony Timmins

Searches for gluon saturation with FoCal

Direct photon R_{pPb}

Compton scattering provides clean probe of gluon nPDFs π^0 (γ)- π^0 correlations

Bjorken-x reach 2 orders magnitude smaller than RHIC

UPC vector meson production

Quarkonia ratios highly sensitive to proton saturation

US LUA 2023 meeting

ALICE 3 - a next generation heavy-ion detector

Compact all-silicon tracker with high-resolution vertex detector and **extremely low material budget** for **Run 5**

✓ Superconducting magnet system up with B=2 T

Particle Identification over large acceptance: muons, electrons, hadrons, photons

✓ Fast read-out and online processing

Detector R&D for **next generation experiments synergies** between ALICE 3, EIC, FCC-ee

ALICE 3 physics program

Key QGP findings from Runs 1 & 2 with ALICE
✓ Evolves as almost perfect fluid that quenches jets
✓ Produces light hadrons in apparent thermal equilibrium
✓ Readily couples with heavy quarks
✓ Indications formed in small systems

ALICE 3 physics program

Key QGP findings from Runs 1 & 2 with ALICE
✓ Evolves as almost perfect fluid that quenches jets
✓ Produces light hadrons in apparent thermal equilibrium
✓ Readily couples with heavy quarks
✓ Indications formed in small systems

What is ALICE 3 designed to discover and explore? ✓QGP temperature evolution and when equilibrium achieved ✓Limits and precision on heavy quark QGP diffusion ✓Nature of QCD phase transition at $\mu_b \sim 0$ ✓Exotic hadron production mechanisms and hadronic interactions ✓Beyond Standard Model searches...

<page-header><page-header><text>

arXiv:2211.04384

Summary

ALICE continues to play **unique and successful role** at the LHC unraveling **emergent properties of nuclear matter**

ALICE upgrades open new era of discovery potential and precision in QCD and QGP physics

Summary

ALICE continues to play **unique and successful role** at the LHC unraveling **emergent properties of nuclear matter**

ALICE upgrades open **new era of discovery potential and** precision in QCD and QGP physics

ALICE provides wonderful opportunity for <u>2023 US Long Range</u> <u>Plan for Nuclear Science</u> recommendation:

✓ "Exploring the nature of quark–gluon matter at the RHIC and through leadership across the heavy ion program at the Large Hadron Collider (LHC)."

V Greene, Wed. at 10.25 am

Backup - ECFA **Detector R&D** roadmap

			Ander 2005 Ander 2005 Marchener 2005 Aucre 1, 2006 Aucre 1	41-45-31 41-45-64-15-47 47-46-6-04-64-15-15 ETC 6-04-64-15-15 ETC 6-04-64-15-15-15	
		DRDT	< 2030	2030-2035	2035- 2040 2040-2045 >2045
Vertex detector ²⁾	Position precision Low X/X _o Low power High rates Large area wafers ³⁾ Ultrafast timing ⁴⁾ Radiation tolerance NIEL Radiation tolerance TID	3.1,3.4 3.1,3.4 3.1,3.4 3.1,3.4 3.1,3.4 3.2 3.3 3.3			
Tracker ⁵⁾	Position precision Low X/X _o Low power High rates Large area wafers ³⁾ Ultrafast timing ⁴⁾ Radiation tolerance NIEL Radiation tolerance TID	3.1,3.4 3.1,3.4 3.1,3.4 3.1,3.4 3.1,3.4 3.2 3.3 3.3			
Calorimeter ⁶⁾	Position precision Low X/X ₀ Low power High rates Large area wafers ³⁾ Ultrafast timing ⁴⁾ Radiation tolerance NIEL Radiation tolerance TID	3.1,3.4 3.1,3.4 3.1,3.4 3.1,3.4 3.1,3.4 3.2 3.3 3.3		••	
Time of flight ⁷⁾	Position precision Low X/X _o Low power High rates Large area wafers ³⁾ Ultrafast timing ⁴⁾ Radiation tolerance NIEL Radiation tolerance TID	3.1,3.4 3.1,3.4 3.1,3.4 3.1,3.4 3.1,3.4 3.2 3.3 3.3		•	

