Exploring the laws of nature at the LHC

Bogdan Dobrescu

Fermilab, Particle Theory Department

December 13, 2023 – Meeting of the US LHC Users Association

Tough questions which could eventually be answered by experiments at hadron colliders:

- Do the SM particles have substructure?
- Are there extra dimensions?

- Why is the electroweak scale much smaller than the Planck scale?
- Can deviations from quantum field theory be eventually measured?

More tractable questions that the LHC experiments have started addressing:

- Are there any gauge bosons beyond the SM?
- What kind of new fermions may exist?
- Do 'elementary' spin-0 particles other than h^0 exist?
- Are there any new long-lived particles?

Run 3 and the HL-LHC will increase the reach of searches for:

- vectorlike quarks and leptons
- Z' and W' bosons
- color-octet scalars, colorons
- diquark scalars, leptoquarks
- supersymmetric particles
- heavy Higgs bosons
- right-handed neutrinos
- ... other new particles

There are also many searches that have never been performed \rightarrow potential for discoveries even with early Run 3 data!

Fermions beyond the Standard Model

Observed elementary particles of spin 1/2:

Chiral quarks and leptons (left-handed doublets, right-handed singlets)

Legacy of LHC Runs 1 & 2: a 4th generation of chiral quarks and leptons is (effectively) ruled out.

Direct searches set limits $\gtrsim 1$ TeV on b_4, t_4 masses, from $t_4 \to W^+ b$ or $b_4 \to W^- t$ (CMS 1906.11903, ATLAS 1505.04306) $\to h^0 \, \bar{t}_4 t_4$ Yukawa coupling no longer perturbative.

Vectorlike fermions

Fermions beyond the SM may exist if they are vectorlike (non-chiral) \rightarrow a different form of matter.

Masses allowed by $SU(3)_c \times SU(2)_W \times U(1)_Y$ gauge symmetry \Rightarrow naturally heavier than the t quark.

Vectorlike quarks can be pair produced at the LHC due to their coupling to gluons. Cross section depends only on their mass.

A vectorlike quark χ that transforms as (3,1,+2/3) under $SU(3)_c \times SU(2)_W \times U(1)_Y$ would mix with the SM top quark. χ is predicted in composite Higgs models (Dobrescu, Hill, hep-ph/9712319), little Higgs models (Arkani-Hamed, Cohen, Georgi, hep-ph/0105239, ...), ...

Mass eigenstates: t and t'. Mixing $\sin \theta_L \equiv s_L$.

'Standard' decay widths of t'are proportional to s_L^2 .

Current limit: $m_{t'}\gtrsim 1.3$ TeV $(CMS \ 1906.11903)$

For $s_L \ll 1$, exotic decays of vectorlike quarks induced by some very heavy particles could dominate!

with Felix Yu, 1612.01909

E.g., 4-fermion operator $(\overline{\chi}_R l_L^3) i\sigma_2 (\overline{\tau}_R q_L^3) \Rightarrow t' \to \tau^+ \tau^- t$

Other LHC signatures: tb
u + 3 au , $tar{t} au^+ au^u
u$, tb au + 3
u , $tar{t} + 4
u$

Similar final states with τ replaced by μ or e ($t\bar{t} + 4\mu$, ...)

Example of UV completion: scalar leptoquark ξ transforms as (3, 2, 7/6) under $SU(3)_c \times SU(2)_W \times U(1)_Y$, and is heavier than t'. Yukawa interactions of ξ : $\lambda_{\chi} (\overline{\chi}_R l_L^3) \xi - i \lambda_q \xi^{\dagger} \sigma_2(\overline{\tau}_R q_L^3) + \lambda_t \xi^{\dagger}(\overline{l}_L^3 t_R)$ Flavor-changing processes beyond the SM that can be probed at LHCb:

LHC probes of the 10 TeV scale

with Robert Harris, Joshua Isaacson, 1810.09429; also 1912.13155

Usual range of masses probed by the LHC extends up to a few TeV.

In the presence of certain ultraheavy new particles called diquarks, the 10 TeV scale can be explored.

Spin-0 particle S_{uu} that interacts with two up quarks:

$${y_{uu}\over 2}\,S_{uu}\,\overline{u}_R^{}\,u_R^c$$

Large production rate because the u PDF is the largest one.

The scalar decays into two jets: $\Gamma_S(S_{uu}
ightarrow u \, u) = rac{y_{uu}^2}{32\pi} \, M_S$

Narrow resonance:
$$\Gamma_S/M_S < \left\{ egin{array}{c} 4\% \\ 7\% \end{array}
ight.$$
 for $y_{uu} \leq \left\{ egin{array}{c} 2 \\ 2.7 \end{array}
ight.$

$$\sigma(pp o S_{uu}) = {\pi \over 6 \, s} \, y^2_{uu} \int_{M^2_S/s}^1 {dx \over x} \, uig(x, M^2_Sig) \, uig(M^2_S/(sx), M^2_Sig)$$

NLO: T. Han, I. Lewis, T. McElmurry, 0909.2666

The QCD jj background is smaller by an order of magnitude. With 3000 fb⁻¹, an S_{uu} as heavy as 11.5 TeV may be discovered!

 S_{uu} may also interact with two t quarks, or with a u and a t:

$$S_{uu} \; \left(rac{y_{tt}}{2} \, \overline{t}_R^{} t_R^{} + y_{ut}^{} \, \overline{u}_R^{} t_R^{}
ight)$$

 $S_{uu} \rightarrow u t$ and $S_{uu} \rightarrow t t$ with highly boosted top quarks.

\overline{u} PDF is highly suppressed compared to u at large x.

Production cross section for S_{uu} is larger by $\sim 10^2$ than that for its antiparticle, so no similar processes with top antiquarks!

For leptonic decays $t \rightarrow \ell^+ b + E_T$, signal consists entirely of positively charged leptons.

Scalar diquark plus vectorlike quark

 S_{uu} coupling to a vectorlike quark χ :

$$S_{uu} \; \left(y_{u\chi} \, \overline{u}_R \, \chi^c_R + y_{t\chi} \, \overline{t}_R \, \chi^c_R + rac{1}{2} \, y_{\chi_R} \, \overline{\chi}_R \, \chi^c_R + rac{1}{2} \, y_{\chi_L} \overline{\chi}_L \, \chi^c_L \,
ight)$$

 \Rightarrow S_{uu} may be a narrow ultraheavy resonance.

If χ has "standard" decays: events with boosted h^0 , t, W^+ (only charge + leptons)

If χ has exotic decays \rightarrow various final states

E.g., χ decay into $tt\bar{u}$ via an off-shell S_{uu} , or into a quark and a gluon via a dimension-5 operator

Search for a high-mass particle decaying into a pair of dijet resonances

2 events with 4-jets at a mass of 8.4 TeV (CMS 2206.09997):

This is a case where sensitivity grows much faster than $\sqrt{\mathcal{L}}$.

In principle, a discovery could be made with slightly more data.

Searches for a high-mass particle decaying into a pair of dijet resonances

CMS 2206.09997

ATLAS 2307.14944

Many other interesting searches remain to be performed

• Type-I two Higgs doublet model:

parameter range where non-SM Higgs bosons are fermiophobic and lighter than $\sim 150~{\rm GeV}.$

P. Fox, N. Weiner, 1710.07649

$$pp o tar{t}$$
 followed by $t o H^+ b$ and $H^+ o H^0 W^* o (\gamma\gamma) jj$ ôû

• Z' decay into "anomalons" Vectorlike fermions must carry U(1)charge to cancel the gauge anomalies. Cascade decays via anomalons: signals with W's, Z's, Higgs + $\not{\!\!E}_T$ (1506.04435) ÔÔ

... various other examples.

Conclusions

LHC experiments are probing the laws of nature at the shortest distances accessible by humans so far.

Many hiding places for new physics (including the *tails* of distributions).

We don't know what Run 3 will find...

phdcomics.com/higgs