A Search for Sexaquarks in Parked 2018 Data at CMS

 $\mathsf{Wren\; Vetens}^{1}$ (she/her & they/them) In collaboration with: Steven Lowette² Kevin Black¹

> ¹University of Wisconsin - Madison ²Vrije Universiteit Brussel

USLUA Lightning Talk, Fermilab, 14 December 2023

Occam's Razor appeal: "Sexaquark" (S): uuddss bound state. Search for \bar{S} production at LHC, annihilating with a neutron in the CMS beampipe, and reconstruct charged final state in the tracking system. As a deep QCD Bound State, could potentially resolve muon g-2 anomaly [\[4\]](#page-12-0).

Very unique properties

- Electrically neutral, dibaryonic $(B = 2)$, doubly strange $(S = -2)$, spin–0
- No need for final state particles to come from the beamspot
- Stable (or very long-lived) if $m_{\mathsf{S}} \lesssim 2 \, \mathsf{GeV/c^2} \; [3].$ $m_{\mathsf{S}} \lesssim 2 \, \mathsf{GeV/c^2} \; [3].$ $m_{\mathsf{S}} \lesssim 2 \, \mathsf{GeV/c^2} \; [3].$

Within a mass range of \approx 1.7 to 2 GeV/c^2 , S is a potential baryonic Dark Matter candidate.

Train Boosted Decision Tree (BDT) on Simulated S signal and data-driven combinatorial background. Aim for a zero-background final result.

Simulation

Monte Carlo simulation of \overline{S} at $\overline{5}$ masses characterizing likely range for Dark Matter S: 1.7, 1.8, 1.85, 1.9, and 2.0 GeV/ c^2 [\[5\]](#page-12-2).

- Production at LHC: custom-tuned verson of EPOS–LHC event generation software [\[7\]](#page-13-0).
- \bar{S} n annihilation in beampipe and simulation of (grand) daughters in CMS detector: modified version of GEANT4.

Data

Use the 2018 CMS "B-Parking" Dataset for both search region and background.

- \approx 300 Billion unique inelastic p–p collisions.
- Events passing loose trigger requirement "parked" to tape, processed later during LS2.

Fiducial cuts and a tight preselection must be applied for reasonable storage of analysis samples. The full dataset would otherwise require ≈ 3.5 petabytes to store.

- Limitation of standard data taking: **prompt reconstruction** requires a lot of computing resources.
- Raw "Parked" data instead saved directly to tape, reconstructed during a lull in computing infrastructure use (i.e. during a shutdown)
- More than the standard 1 kHz of physics events can be recorded! Rate now constrained by DAQ bandwidth and tape storage space.
- Since there is **No Trigger** associated with our final state, we search for our signal in the **pileup** of triggered events.
- What matters to our search is not the luminosity, but the total number of unique inelastic p-p collisions.
- Since our only source of background is combinatorial, pileup is also the greatest contributor.
- Want: Low Pileup, high degree of collisions \Rightarrow B-Parking

Reconstruction Williams and Williams and

- Λ and K^0_s formed from oppositely charged track pairs are fit to a common vertex using a Kalman vertex fitter as part of an adapted version of the CMS V^0 algorithm
- Reconstructed K^0_s and $\Lambda^0/\bar{\Lambda}^0$ are kinematically refitted to their world average masses.
- The two then undergo a Kalman vertex fit to a common vertex. (For signal this will represent the annihilation vertex of the \overline{S}).
- Common vertex required to have a good fit.
- The object is a "S" when it has a p from Λ^0 , and a "S" when it has a \bar{p} from a $\bar{\Lambda}^0$.
- Low reconstruction efficiency ($\approx 0.006\%$) dominated by low final state acceptance and low reco. efficiency for π^{\pm} from Λ ($\approx 13\%$ in accepted events).

Reconstruction Strategy Wren Vetens

Search Region

 $\bar{\textbf{S}}$ reconstructed from $\bar{\boldsymbol{\Lambda}}^\mathbf{0}$ and $\boldsymbol{\mathsf{K}}_s^\mathbf{0}$ fit to common vertex.

Background

 ${\mathbf S}$ reconstructed from ${\mathbf \Lambda}^{\mathbf 0}$ and ${\mathsf K}^0_s$ fit to common vertex. Not a real S, since S does not

annihilate with ordinary matter.

Reconstruct $\Lambda^0/\bar\Lambda^0$ with K^0_s from previous 50 events (for higher statistics in the signal region) to compute correction factor for modeling \overline{S} background as data S.

- Annihilation with neutron, decay of $\bar{\Lambda}^0$ and K^0_s , and propagation of their daughters through the CMS tracker was simulated in a modified version of the GEANT4 simulation software.
- $\bar{S}-$ n Interaction region consists of the 9 Be beampipe and surrounding air molecules.
	- Could in principle be extended to throughout the CMS tracker.
- Very low interaction cross section requires the introduction of a looping mechanism to ensure an economical simulation.
- Reintroduce expected angular dependency with angular weight factor - accounts for more beampipe material crossed at higher η

Neutron Fermi Motion \hat{w} wren Vetens

Nonzero neutron momentum in the 9 Be nucleus means that \bar{S} with high momenta have a greater spread in their "observed" mass:

 $m_{\rm 5,\,obs}^2 = m_{\rm 5}^2 + 2\left(\sqrt{m_{\rm n}^2+p_{\rm n}^2} - m_{\rm n}\right)\left(\sqrt{m_{\rm 5}^2+p_{\rm 5}^2} + \sqrt{m_{\rm n}^2+p_{\rm n}^2}\right) - 2p_{\rm n}p_{\rm 5}\cos\theta + p_{\rm n}^2$

Here, $m_{\bar{S}}$ is the true mass of the S and $m_{\bar{S}$ _{obs} is the mass calculated under a zero neutron momentum hypothesis. The "negative" mass occurs in the figure below when $(E_{K^0_S}+E_{\bar{\Lambda}^0})^2<||\vec{p}_{K^0_S}+\vec{p}_{\bar{\Lambda}^0}||^2$.

Simulated neutron Fermi momentum

Parameterized BDT New York Williams Williams Williams Netens

Train parameterized BDT on data S background vs simulated signal S:

Parameterized BDT

BDT Training parameterized by $m_{\bar{S},gen}$ – a physical value for signal but not for background:

 $m_{\bar{S},gen} = 1.7, 1.8, 1.85, 1.9,$ and 2.0 GeV/ c^2

For background training sample, randomly assign each point a "m_{5 $_{gen}$}" from these values. When classifying, evaluate model for each $m_{\bar{S},gen}$ as a mass hypothesis.

- Allows for model interpolation between different particle masses [\[1\]](#page-12-3).
- $m_{\bar{S},gen}$ not straightforwardly distinguishable based on $m_{\bar{S}$ obs due to smearing from neutron Fermi momentum.
- In the event of a discovery, S mass could be inferred through likelihood estimator [\[2\]](#page-12-4) based on our model.

Factor must be extrapolated into the Signal Region: \bar{S} with BDT > 0.1

S : S Correction factor **The Contract of Wren** Vetens

Signal Region: \bar{S} with BDT > 0.1

- Extract \overline{S}/S ratio from $\overline{S}(S)$ with high BDT Classifier in combinatorial sample.
- Linear fit on ratio for BDT \in (-0.1, ∞)
- Low statistics in data near signal region \Rightarrow Large contribution to uncertainty from extrapolation.
- In data: Linear fit on ratio for $BDT \in (-0.1, 0.1)$ extrapolated into signal region. Difference with ratio in combinatorial sample computed as uncertainty ($\approx 40\%$ at BDT 0.35).

Anticipated Blind Asymptotic Limits Ween Vetens

- Anticipate sensitivity down to 1/2000th of normal hadronic cross sections.
- Due to model parameterization, extrapolation factor and optimal BDT cut must be taken as functions of mass hypothesis.
- Aiming for Moriond 2024, planning to work through pre-approval checklist early January.

References I Web 2008 and the Contract of the Contract of the Web 2019 Million Vetens

- [1] Pierre Baldi, Kyle Cranmer, Taylor Faucett, Peter Sadowski, and Daniel Whiteson. Parameterized neural networks for high-energy physics. The European Physical Journal C, 76(5), apr 2016.
- [2] Kyle Cranmer, Johann Brehmer, and Gilles Louppe. The frontier of simulation-based inference. Proceedings of the National Academy of Sciences, 117(48):30055–30062, May 2020.
- [3] Glennys R. Farrar. Stable sexaquark, 2018. arXiv:1708.08951[hep-ph].
- [4] Glennys R. Farrar. The muon g-2 and lattice qcd hadronic vacuum polarization may point to new, long-lived neutral hadrons, 2022. arXiv:2206.13460[hep-ph].
- [5] Glennys R. Farrar. A stable sexaquark: Overview and discovery strategies, 2022. arXiv:2201.01334[hep-ph].
- [6] Greg Landsberg. B physics parking program at cms, 2018. Talk https://indico.cern.ch/event/754760/contributions/3127694/attachments/17141 parking-RDMS-2018.pdf.

References II New York 1999 States and the United States and the Windows States and Windows States and Windows

[7] T. Pierog, Iu. Karpenko, J. M. Katzy, E. Yatsenko, and K. Werner. Epos lhc: Test of collective hadronization with data measured at the cern large hadron collider. Physical Review C, 92(3), Sep 2015.

- Use existing triggers for $B^0\to K^*\mu^+\mu^-$ combined with the fact that B-mesons are often produced in pairs to get a sample of $B^0 \to K^* e^+ e^-$ for measuring $R(K^*)$
- Recorded 10^{10} unbiased B hadron events, average pileup approx 30

Figures on this slide from [\[6\]](#page-12-5)

BDT trained using the AdaBOOST algorithm, Sensitive variables include:

- Locations and of \overline{S}/S interaction vertex and $\bar{\Lambda}^0/\Lambda^0$ and K^0_s decay vertices.
- Longitudinal impact parameters of \bar{S}/S , $\bar{\Lambda}^0/\Lambda^0$, and K_s with respect to the primary vertex (PV).
- Whether or not the \bar{S}/S , $\bar{\Lambda}^0/\Lambda^0$, and K^0_s momentum points away from the PV.
- Number of PV present in the event.
- Fit quality of the \overline{S}/S vertex.
- Reconstructed and generated S mass.
- K⁰s p_T and η , and \bar{S}/S η .
- Angular differences between the \bar{S}/S , $\bar{\Lambda}^0/\Lambda^0$, and K_s^0 17 / 18

Training Pt. II Western Straining Pt. II

BDT is precise enough to cut away all background while still having reasonable signal efficiency.

Need a handle on uncertainty in the high BDT–classifier signal region (BDT > 0.1), and must take into account the fact that all background is cut out in our optimization.

Both problems addressed with $S : \overline{S}$ Correction factor