A Search for Sexaquarks in Parked 2018 Data at CMS

Wren Vetens¹ (she/her & they/them) In collaboration with: Steven Lowette² Kevin Black¹

> ¹University of Wisconsin - Madison ²Vrije Universiteit Brussel

USLUA Lightning Talk, Fermilab, 14 December 2023

Premise

 Occam's Razor appeal: "Sexaquark" (S): uuddss bound state. Search for \$\overline{S}\$ production at LHC, annihilating with a neutron in the CMS beampipe, and reconstruct charged final state in the tracking system.
 As a deep QCD Bound State, could potentially resolve muon g-2 anomaly
 \$\overline{P}\$ \$\verline{\Pi}\$ \$\verlin{\Pi}\$ \$\verline{\Pi}

Very unique properties

- Electrically neutral, dibaryonic (B = 2), doubly strange (S = -2), spin-0
- No need for final state particles to come from the beamspot
- Stable (or very long-lived) if $m_{\rm S} \lesssim 2 \,{\rm GeV/c^2}$ [3].

Within a mass range of ≈ 1.7 to 2 GeV/ c^2 , S is a **potential baryonic** Dark Matter candidate.

 $\bar{\Lambda}^{0}(\bar{u}\bar{d}\bar{s}) \rightarrow \pi^{+}(u\bar{d}) + \bar{p}(\bar{u}\bar{u}\bar{d})$

 $\mathsf{K}^0_s \left(rac{\mathrm{d}\bar{\mathsf{s}} - \bar{\mathrm{d}}\mathsf{s}}{\sqrt{2}}
ight)
ightarrow \pi^+(\mathsf{u}\bar{\mathsf{d}}) + \pi^-(\bar{\mathsf{u}}\mathsf{d})$

Strategy

Train Boosted Decision Tree (BDT) on Simulated \overline{S} signal and data-driven combinatorial background. Aim for a **zero-background** final result.

Simulation

Monte Carlo simulation of \overline{S} at 5 masses characterizing likely range for Dark Matter \overline{S} : 1.7, 1.8, 1.85, 1.9, and 2.0 GeV/c²[5].

- Production at LHC: custom-tuned verson of EPOS–LHC event generation software [7].
- \$\overline{S} n\$ annihilation in beampipe and simulation of (grand) daughters in CMS detector: modified version of GEANT4.

Data

Use the 2018 CMS "B-Parking" Dataset for both search region and background.

- ≈ 300 Billion unique inelastic p-p collisions.
- Events passing loose trigger requirement "parked" to tape, processed later during LS2.

Fiducial cuts and a tight preselection must be applied for reasonable storage of analysis samples. The full dataset would otherwise require ≈ 3.5 petabytes to store.

- Limitation of standard data taking: **prompt reconstruction** requires a lot of computing resources.
- Raw "Parked" data instead saved directly to tape, reconstructed during a lull in computing infrastructure use (i.e. during a shutdown)
- More than the standard 1 kHz of physics events can be recorded! Rate now constrained by DAQ bandwidth and tape storage space.
- Since there is **No Trigger** associated with our final state, we search for our signal in the **pileup** of triggered events.
- What matters to our search is not the luminosity, but the total number of unique inelastic p-p collisions.
- Since our only source of background is combinatorial, pileup is also the greatest contributor.
- Want: Low Pileup, high degree of collisions \Rightarrow B-Parking

Reconstruction

- Λ and K_s^0 formed from oppositely charged track pairs are fit to a common vertex using a *Kalman* vertex fitter as part of an adapted version of the CMS V^0 algorithm
- Reconstructed K_s^0 and $\Lambda^0/\bar{\Lambda}^0$ are kinematically refitted to their world average masses.
- The two then undergo a Kalman vertex fit to a common vertex. (For signal this will represent the annihilation vertex of the S
).
- Common vertex required to have a good fit.
- The object is a "S" when it has a p from $\Lambda^0,$ and a "S" when it has a \bar{p} from a $\bar{\Lambda}^0.$
- Low reconstruction efficiency ($\approx 0.006\%$) dominated by low final state acceptance and low reco. efficiency for π^{\pm} from Λ ($\approx 13\%$ in accepted events).

Reconstruction Strategy

Search Region

 $\bar{\mathbf{S}}$ reconstructed from $\bar{\mathbf{\Lambda}}^{\mathbf{0}}$ and \mathbf{K}_{s}^{0} fit to common vertex.

Background

S reconstructed from Λ^{0} and K_{s}^{0} fit to common vertex. Not a real **S**, since **S** does not

annihilate with ordinary matter.

Reconstruct $\Lambda^0/\bar{\Lambda}^0$ with ${\sf K}^0_s$ from previous 50 events (for higher statistics in the signal region) to compute correction factor for modeling $\bar{\sf S}$ background as data S.

Simulation

- Annihilation with neutron, decay of $\bar{\Lambda}^0$ and K_s^0 , and propagation of their daughters through the CMS tracker was simulated in a modified version of the GEANT4 simulation software.
- S
 –n Interaction region consists of the ⁹Be beampipe and surrounding air molecules.
 - Could in principle be extended to throughout the CMS tracker.
- Very low interaction cross section requires the introduction of a *looping* mechanism to ensure an economical simulation.
- Reintroduce expected angular dependency with angular weight factor accounts for more beampipe material crossed at higher η

Neutron Fermi Motion

Nonzero neutron momentum in the ⁹Be nucleus means that \overline{S} with high momenta have a greater spread in their "observed" mass:

 $\mathbf{m}_{\bar{\mathsf{S}},\text{obs}}^2 = \mathbf{m}_{\bar{\mathsf{S}}}^2 + 2 \Big(\sqrt{\mathbf{m}_{\mathsf{n}}^2 + p_{\mathsf{n}}^2} - \mathbf{m}_{\mathsf{n}} \Big) \Big(\sqrt{\mathbf{m}_{\bar{\mathsf{S}}}^2 + p_{\bar{\mathsf{S}}}^2} + \sqrt{\mathbf{m}_{\mathsf{n}}^2 + p_{\mathsf{n}}^2} \Big) - 2 p_{\mathsf{n}} p_{\bar{\mathsf{S}}} \cos \theta + p_{\mathsf{n}}^2.$

Here, $m_{\bar{S}}$ is the true mass of the \bar{S} and $m_{\bar{S},obs}$ is the mass calculated under a zero neutron momentum hypothesis. The "negative" mass occurs in the figure below when $(E_{KQ} + E_{\bar{\Lambda}0})^2 < \|\vec{p}_{KQ} + \vec{p}_{\bar{\Lambda}0}\|^2$.

Simulated neutron Fermi momentum

Parameterized BDT

Train parameterized BDT on data S background vs simulated signal \overline{S} :

Parameterized BDT

BDT Training parameterized by $m_{\bar{S},gen}$ – a physical value for signal but not for background: $m_{\bar{c}} = 1.7, 1.8, 1.85, 1.9, and 2.0 \text{ GeV}/c^2$

 $m_{\bar{S},gen}=1.7,\,1.8,\,1.85,\,1.9,$ and 2.0 GeV/c² For background training sample, randomly assign each point a "m_{\bar{S},gen}" from these values. When classifying, evaluate model for each $m_{\bar{S},gen}$ as a mass hypothesis.

- Allows for model interpolation between different particle masses [1].
- m_{\$\overline{5},gen\$} not straightforwardly distinguishable based on m_{\$\overline{5},obs} due to smearing from neutron Fermi momentum.
- In the event of a discovery, S mass could be inferred through likelihood estimator [2] based on our model.

Factor must be extrapolated into the Signal Region: \overline{S} with BDT > 0.1

$S:\bar{S}$ Correction factor

Wren Vetens

Signal Region: \bar{S} with BDT > 0.1

- Extract \bar{S}/S ratio from $\bar{S}(S)$ with high BDT Classifier in combinatorial sample.
- Linear fit on ratio for BDT \in (-0.1, $\infty)$
- Low statistics in data near signal region ⇒ Large contribution to uncertainty from extrapolation.
- In data: Linear fit on ratio for BDT \in (-0.1, 0.1) extrapolated into signal region. Difference with ratio in combinatorial sample computed as uncertainty ($\approx 40\%$ at BDT 0.35).

Anticipated Blind Asymptotic Limits

- Anticipate sensitivity down to 1/2000th of normal hadronic cross sections.
- Due to model parameterization, extrapolation factor and optimal BDT cut must be taken as functions of mass hypothesis.
- Aiming for Moriond 2024, planning to work through pre-approval checklist early January.

References I

- Pierre Baldi, Kyle Cranmer, Taylor Faucett, Peter Sadowski, and Daniel Whiteson. Parameterized neural networks for high-energy physics. *The European Physical Journal C*, 76(5), apr 2016.
- [2] Kyle Cranmer, Johann Brehmer, and Gilles Louppe. The frontier of simulation-based inference. *Proceedings of the National Academy of Sciences*, 117(48):30055–30062, May 2020.
- [3] Glennys R. Farrar. Stable sexaquark, 2018. arXiv:1708.08951[hep-ph].
- [4] Glennys R. Farrar. The muon g-2 and lattice qcd hadronic vacuum polarization may point to new, long-lived neutral hadrons, 2022. arXiv:2206.13460[hep-ph].
- [5] Glennys R. Farrar. A stable sexaquark: Overview and discovery strategies, 2022. arXiv:2201.01334[hep-ph].
- [6] Greg Landsberg. B physics parking program at cms, 2018. Talk https://indico.cern.ch/event/754760/contributions/3127694/attachments/17143 parking-RDMS-2018.pdf.

References II

[7] T. Pierog, Iu. Karpenko, J. M. Katzy, E. Yatsenko, and K. Werner. Epos Ihc: Test of collective hadronization with data measured at the cern large hadron collider. *Physical Review C*, 92(3), Sep 2015.

👿 Wren Vetens

- Use existing triggers for $B^0 \to K^* \mu^+ \mu^-$ combined with the fact that B-mesons are often produced in pairs to get a sample of $B^0 \to K^* e^+ e^-$ for measuring $R(K^*)$
- Recorded 10^{10} unbiased B hadron events, average pileup approx 30

Figures on this slide from [6]

Training

BDT trained using the AdaBOOST algorithm, Sensitive variables include:

- Locations and of $\bar{\rm S}/{\rm S}$ interaction vertex and $\bar{\Lambda}^0/\Lambda^0$ and ${\rm K}^0_s$ decay vertices.
- Longitudinal impact parameters of \bar{S}/S , $\bar{\Lambda}^0/\Lambda^0$, and K_s^0 with respect to the primary vertex (PV).
- Whether or not the \bar{S}/S , $\bar{\Lambda}^0/\Lambda^0$, and K_s^0 momentum points away from the PV.
- Number of PV present in the event.
- Fit quality of the \overline{S}/S vertex.
- Reconstructed and generated S mass.
- $K_s^0 p_T$ and η , and $\bar{S}/S \eta$.
- Angular differences between the $\bar{\rm S}/{\rm S},$ $\bar{\Lambda}^0/\Lambda^0,$ and ${\rm K}^0_s$

Training Pt. II

BDT is precise enough to cut away **all** background while still having reasonable signal efficiency.

Need a handle on uncertainty in the high BDT–classifier signal region (BDT > 0.1), and must take into account the fact that all background is cut out in our optimization.

Both problems addressed with S : \overline{S} Correction factor