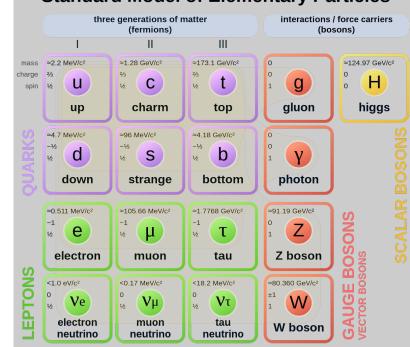


Vector-Like Leptons: CM **Compact Analysis**

Nadia Talbi

University of Wisconsin-Madison Prof. Tulika Bose, Dr. Charis Koraka, & Elise Chavez

I. Introduction

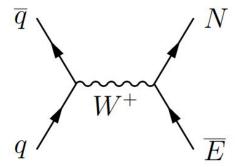

The Standard Model

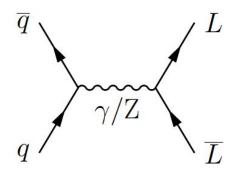
Depicts our understanding of the **fundamental composition** of all matter and interactions in the universe.

Unresolved questions remain:

matter/antimatter, dark matter, gravity, origin of neutrino masses...

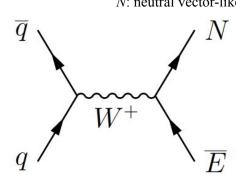
Vector-Like Leptons are one of the many potential resolutions.

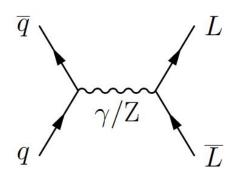

Standard Model of Elementary Particles


Vector-Like Leptons: An Introduction

A few characteristics:

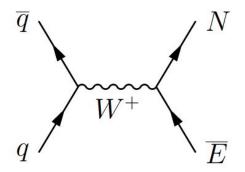
- Vector-like
 - Non-chiral
 - Left & right-handed components have the same charge
- Massive
 - \circ Search from 500 to 1000 GeV
 - Not directly related to the Higgs mechanism

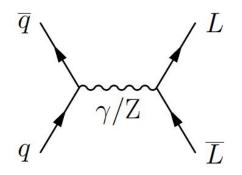

L: general vector-like lepton *E*: charged vector-like lepton *N*: neutral vector-like lepton



Vector-Like Leptons: An Introduction

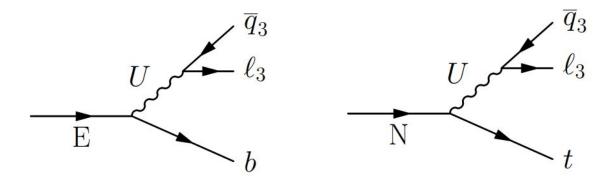
- Vector-Like & Massive (\leq few TeV)
- Hypothesized particles
 - \circ 4321 model¹
 - Extends SM while preserving SM predictions
 - Predicts new particles:
 - Lightest fermions \leq TeV

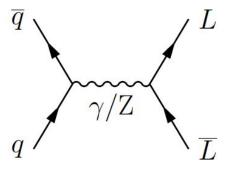

L: general vector-like lepton *E*: charged vector-like lepton *N*: neutral vector-like lepton


Vector-Like Leptons: An Introduction

- Vector-Like & Massive (\leq few TeV)
- Hypothesized particles
 - 4321 model
- Potential to answer:
 - Lepton-flavor non-universality
 - B-anomalies
 - Leptoquark couplings could explain
 - Electron & Muon anomalous magnetic moment

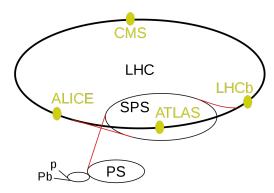
$$\Delta a_{\mu} = a_{\mu}^{\exp} - a_{\mu}^{\rm SM} = 288(63)(49) \times 10^{-11}$$

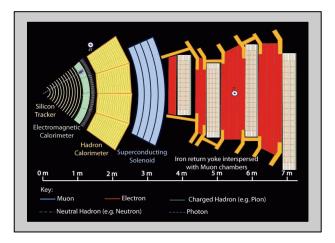

L: general vector-like lepton *E*: charged vector-like lepton *N*: neutral vector-like lepton

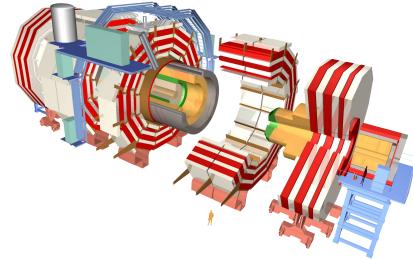


Vector-Like Leptons: Production & Decay

- Electroweak pair production
- Decay via Leptoquark U
 - \circ U couples strongly to **third gen.** could explain b-anomalies





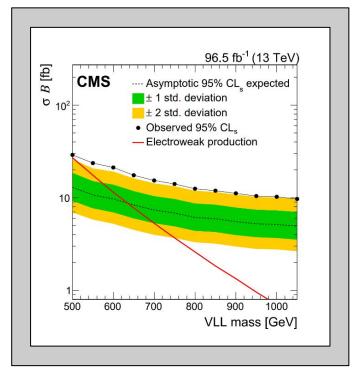

II. The Search Method

Vector-Like Leptons: The Detector

- Compact Muon Solenoid (CMS)
- Analyzes **proton-proton collisions** at LHC
 - $\circ \sim 4T$ Solenoid & 6.5 TeV per beam (Run II)

Vector-Like Leptons: The Process of Analysis

- The fundamental question: **Do vector-like leptons exist?**
- Current aim: Develop a strong method to determine signal from background
- The Process
 - Determine signal, final states, & background
 - Establish S v. B expectations
 - by employing Monte Carlo (MC) simulations
 - Develop **method** to help distinguish **S** from **B**
 - Employ method on CMS Run II data
 - Results: Analyze data for vector-like lepton presence


Vector-Like Leptons: The Motivation

Previous analysis, B2G-21-004, finds excess:

- Considers hadronic τ decay
 - Mainly QCD background

Vector-like lepton search in need of analysis in \perp phase space

•• search in the **leptonic** phase space

Vector-Like Leptons: Defining Signal & Regions

e,μ

 q_3

 q_3

- Leptonic phase space
- Decays resulting in 2ℓ from t or τ
 - $\mathbf{E}^+ \rightarrow \mathbf{t} \, \mathbf{v} \tau^{\sim} \, \overline{\mathbf{b}} \text{ or } \mathbf{\tau}^+ \, \mathbf{b} \, \overline{\mathbf{b}}$
 - **E-** $\rightarrow \overline{\mathbf{t}}$ v τ b or $\mathbf{\tau}$ b $\overline{\mathbf{b}}$ Ο
 - $\mathbf{N} \to \mathbf{t} \, \boldsymbol{\tau} \, \overline{\mathbf{b}} \text{ or } \mathbf{t} \, \overline{\mathbf{t}} \, \mathbf{v} \boldsymbol{\tau}$ $\mathbf{\overline{N}} \to \mathbf{t} \, \overline{\mathbf{t}} \, \mathbf{v} \boldsymbol{\tau} \text{ or } \overline{\mathbf{t}} \, \boldsymbol{\tau}^{+} \, \mathbf{b}$

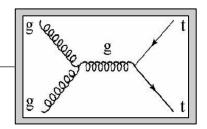
Hadronic

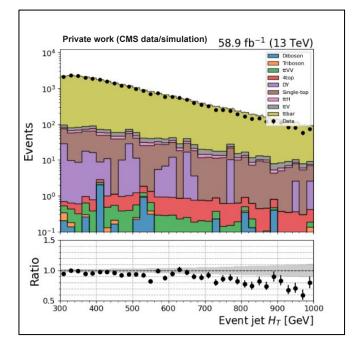
Leptonic

Signal Region (4b + jets) Expect the greatest signal/background ratio. Where to search.

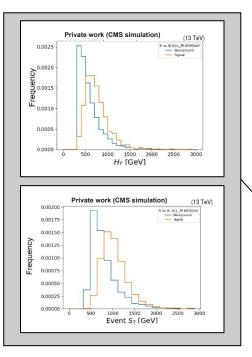
Control Region (3b or 2b + jets) Expect negligible signal contribution Aids in understanding background in SR.

 ℓ : electron or muon


h

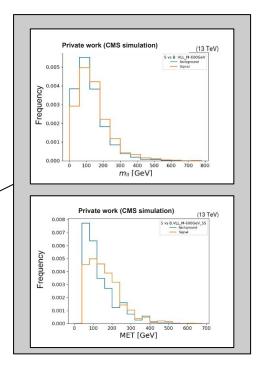

 q_3

E


Vector-Like Leptons: Signal & Background

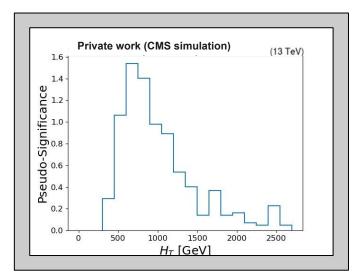
- Signal:
 - 2l final states
- Background:
 - tt-bar
 - DY+jets
 - Di-boson production
 - Tri-boson production
 - tt(V/H)+jets
 - tt+VV
 - o 4-top

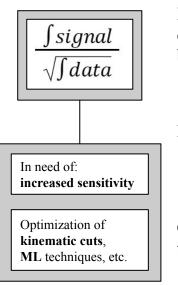
Vector-Like Leptons: Signal v. Background



600-GeV Plots:

Normalized to the same arbitrary number


Challenging to distinguish as signal resembles background.


Shifted peaks give potential for signal-to-background **discrimination**

Vector-Like Leptons: Signal v. Background

Pseudo-Significance in Event H_T (600 GeV)

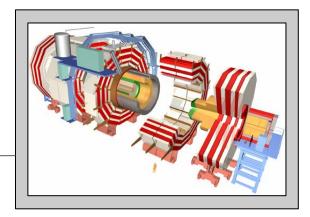
What does it signify?

Estimate how **significant** the **deviations** are between data and background.

 $S = \frac{N-n_b}{\sigma}$

By taking $\sigma \approx \sqrt{N}$...

$$S = \frac{n_s}{\sqrt{N}}$$

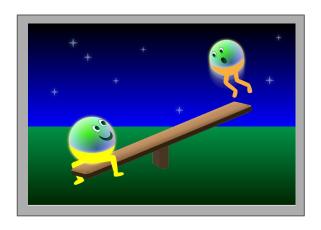

Often, 5σ is the accepted value for the detection of **new particles**.

N: number of data events n_b : number of background events n_s : number of signal events σ : standard deviation of *N*

Vector-Like Leptons: The Future

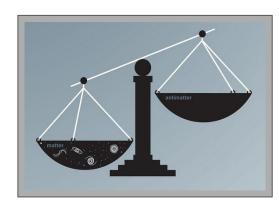
The Process

- Determine signal, final states, & background
- Establish S v. B expectations by employing MC simulations
- Develop **method** to further distinguish **S** from **B**
- Employ method on CMS Run II data
- Results: Analyze data for **vector-like lepton** presence



Will the existence of vector-like leptons be revealed or refuted?

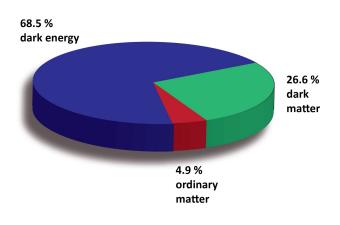
Explaining Further


The Standard Model

- Matter/Antimatter Asymmetry
- Origin of Neutrino Masses
- Gravitational Force
- Accounting for the 95%

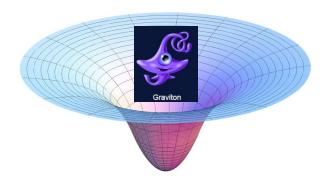
Matter/Antimatter Asymmetry: Following the Big Bang there were inequivalent amounts of matter & antimatter

+1 matter particle per billion


Neutrinos:

Why?

Standard Model explains neutrinos as massless observed to change flavor... **only possible** with neutrino mass.


The Standard Model

- Matter/Antimatter Asymmetry
- Origin of Neutrino Masses
- Gravitational Force
- Accounting for the 95%

Gravity:

currently not present in the Standard Model QM must explain!

The 95%:

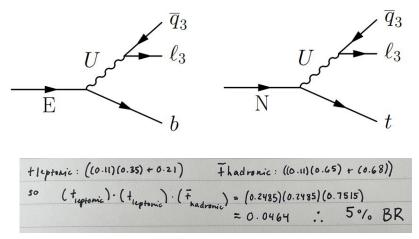
SM only accounts for baryonic matterDark Matter must be explained (galaxy rot. curves)Dark Energy must be explained (accel. expansion)

Vector-Like Leptons: Decay Probabilities

E+N decay example

Branching Ratio: the probability that a particle decays a particular way

- 1) Possible decays:
 - a. $E^+ \rightarrow b$, bbar, τ^+ or **bbar**, **t**, **vbar** τ
 - b. N \rightarrow t, bbar, τ or **t**, tbar, $v\tau$


2) 2ℓ Final States from this decay

- a. $\ell + \ell + b$ b bbar bbar v τ v τ bar v ℓ v ℓ from [t,t]
- b. $\ell + \ell$ b b bbar bbar vt vtbar v ℓ v ℓ bar from 2x [t, tbar]

3) BR Calculation considering all t's and τ 's

- E: $\mathbf{t} \to \mathbf{b} \ W^+ \to \text{either } \mathbf{v} \tau \ \tau^+ \to \ \mathbf{\ell}^+ \mathbf{v} \ell \ \mathbf{v} \tau \text{ or } \ W^+ \to \mathbf{\ell}^+ \mathbf{v} \ell$
- N: $\mathbf{t} \to \mathbf{b} \ W^+ \to \mathbf{v} \mathbf{\tau} \ \mathbf{\tau}^+ \to \ \mathbf{\ell}^+ \mathbf{v} \ell \ \mathbf{v} \mathbf{\tau} \text{ or } W^+ \to \mathbf{\ell}^+ \mathbf{v} \ell$
- N: tbar \rightarrow bbar W- \rightarrow v τ bar τ \rightarrow hadronic! or W- \rightarrow hadronic!

4) BR found!

Vector-Like Leptons: Background Prediction

In order to determine the presence of vector-like leptons in data...

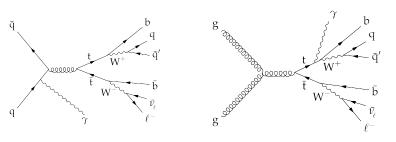
Develop a function which predicts background so as to isolate signal contribution

Tag Rate Function

Data-driven background predictor Utilizes data in **CR** to predict background in **SR** Advantage of minimized simulation uncertainties

Process:

- 1. Estimate probability that a jet in an event is b-tagged.
- 2. Determine probability that an event contains certain number of b-tagged jets.
- 3. Create probability map to predict if a background jet is b-tagged
- 4. Determine the formula to predict the background.


CR: 4j2b 5j2b 6j2b 4j3b 5j3b 6j3b

Vector-Like Leptons: Selection Criteria

Electrons	$p_T > 10 \text{ GeV}$	$ \eta < 2.4$	CutBasedIdTight	eleEtaGapVeto
Muons	$p_{\rm T}^{} > 10 \; {\rm GeV}$	$ \eta < 2.4$	tightId	pfRelIso04_all < 0.25
MET	p _T > 40 GeV			
Jets	$p_T > 30 \text{ GeV}$	$ \eta < 2.4$	mediumJetIDbit	mediumJetIDbit

Explaining Further: Background

• tt-bar

- DY+jets (Drell-Yan)
 - Originates from l & lbar, virtual photon or Z boson.
 - Fewer jets than signal.
- **Di-boson production** (ZZ, WW, ZW)
 - The production of weak bosons (W, Z, gamma).
 - Lower x-section than signal.

- **Tri-boson production** (WWW, ZZZ, WWZ)
 - The production of weak bosons.
 - Rarer & more complex final states..
- **tt(V/H)+jets** (ttZ, ttW, ttH)
 - The production of t pairs with bosons
 - 10x greater x-section than signal.
- tt+VV (ttHH, ttZZ)
 - The production of t pair, vector & scalar bosons.
 - X-sections often smaller than ttbar
- **4-top** (tttt)
 - The production of 4 top quarks.
 - X-section much smaller than ttbar.

References

- <u>B2G-21-004</u>
- <u>Why should we search for vector-like leptons?</u>
- CMS Search for vector-like leptons in the 4321 model (Kyle Cormier)
- <u>Review+(partial) combination of VLQ+VLL+HNL (short and long-lived)</u>
- <u>Hunting leptoquarks with the CMS experiment</u>
- <u>Search for vector-like leptons in multilepton final states</u>