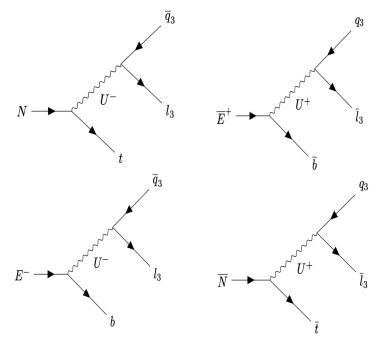
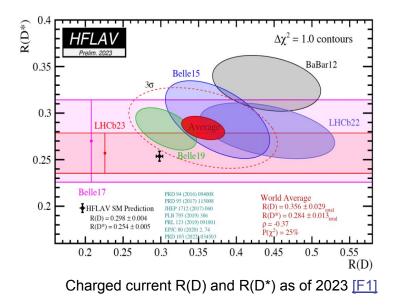


‡ Fermilab


A Search for Vector Like Leptons (VLLs)

Elise Chavez University of Wisconsin Madison USLUA December 13, 2023 Advisors: Tulika Bose and Charis Koraka

What are VLLs? Why do we care?


- Standard model is incomplete
 - Possible lepton non-universality?
 - Dark matter?
 - Need to look beyond
- Vector-like leptons (VLLs) predicted by a BSM extension of the standard model, the 4321 model
 - One charged and one neutral same masses
 - Decay through a leptoquark, which couples most strongly to the third generation

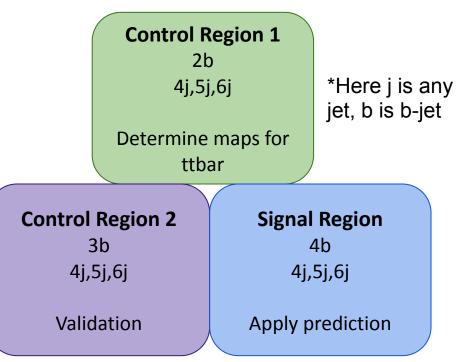
Theory Papers: <u>Gauge leptoquark as the origin of B-physics anomalies</u>, <u>Maximal flavour violation: a Cabibbo mechanism for leptoquarks</u>


What are VLLs? Why do we care?

- VLLs and the leptoquark help reconcile discrepancies with the standard model
 - Resolve B-hadron anomalies => lepton non-universality
 - Possible decay to dark matter => dark matter
 - Contribute to muon and electron magnetic moment => anomalous magnetic moment

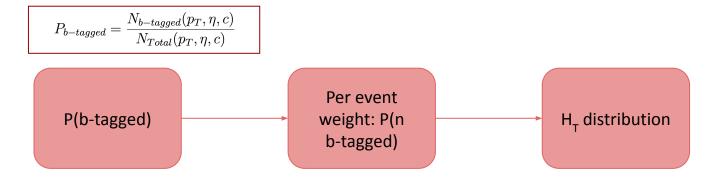
VLL Signal and Background

- Dilepton decays
- Main source of background is tt-bar
 - Produces opposite signed leptons
- Exploit by separating signal into same sign (SS) and opposite sign (OS) lepton pairs in final states

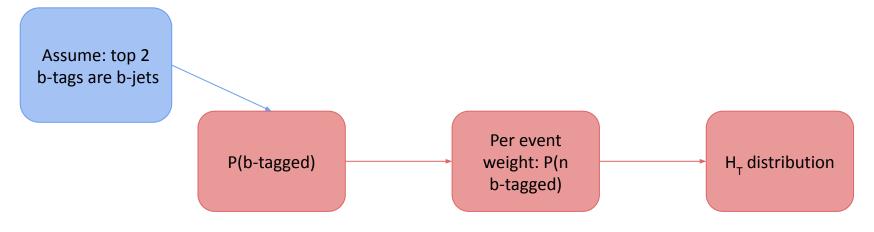

Feynman diagram of ttbar produced by proton-proton collision. [F2]

Lepton Pair Charge	VLL Pair	Final States
SS	EE	_
	EN	2l + 4b + 2j + MET
	NN	2l + 4b + 4j + MET
OS	EE	2l + 4b + MET
	EN	2l + 4b + 2j + MET
	NN	2l + 4b +4j + MET

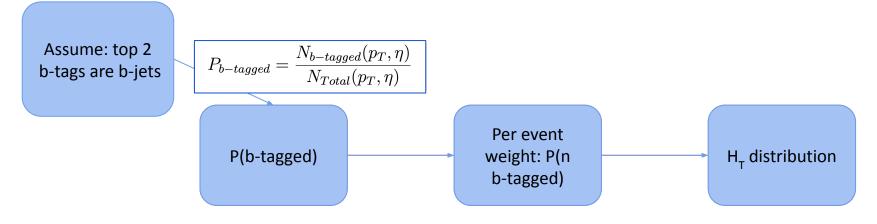
A Search for Vector-Like Leptons (VLLs)


Distinguishing Signal and Background

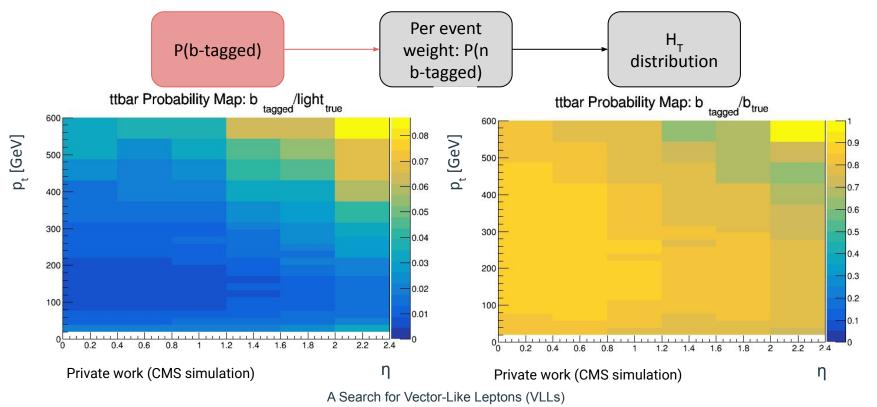
- To deal with the uncertainties coming from simulation, decided to use a data-driven background prediction method called a tag rate function
 - \circ Use H_T
 - Define Regions

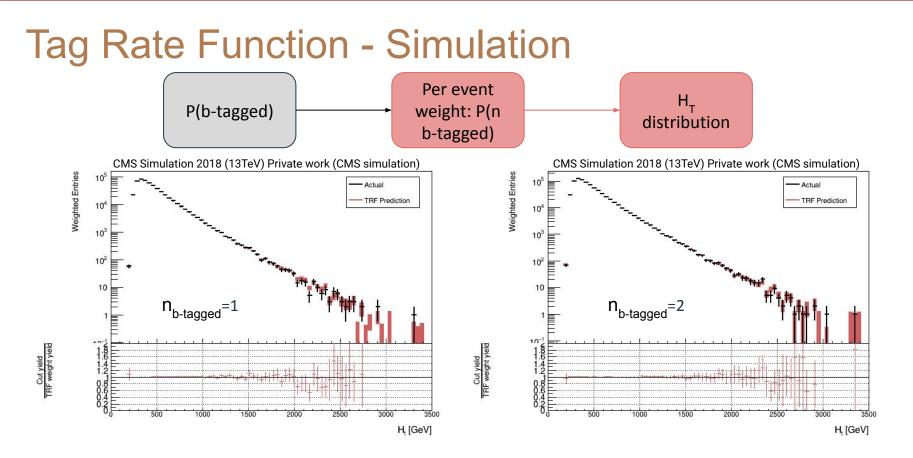

Tag Rate Function

- Simulation: know jet flavors => determine tagging probabilities => derive weight
- Treat Simulation like data: don't know jet flavors => make assumptions => derive weight

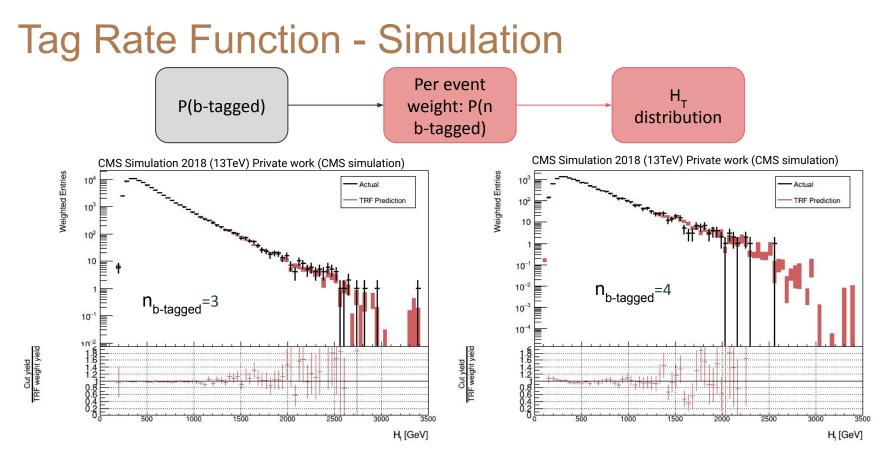

Tag Rate Function

- Simulation: know jet flavors => determine tagging probabilities => derive weight
- Treat Simulation like data: don't know jet flavors => make assumptions => derive weight

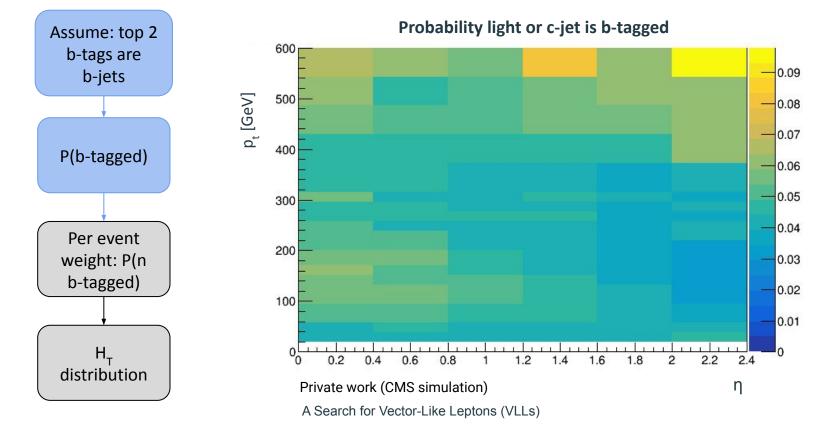



Tag Rate Function

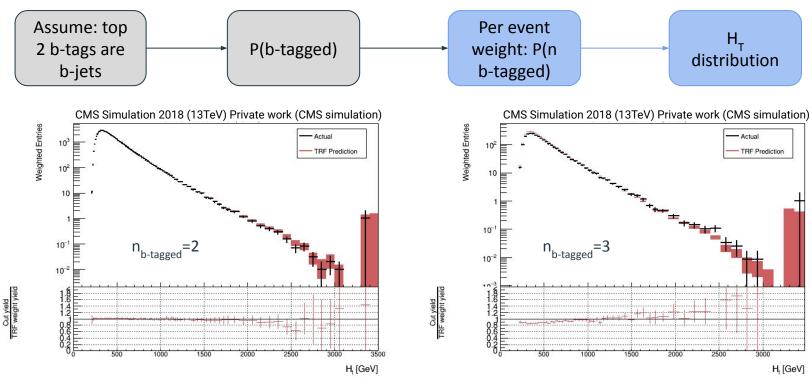
- Simulation: know jet flavors => determine tagging probabilities => derive weight
- Treat Simulation like data: don't know jet flavors => make assumptions => derive weight


Tag Rate Function - Simulation

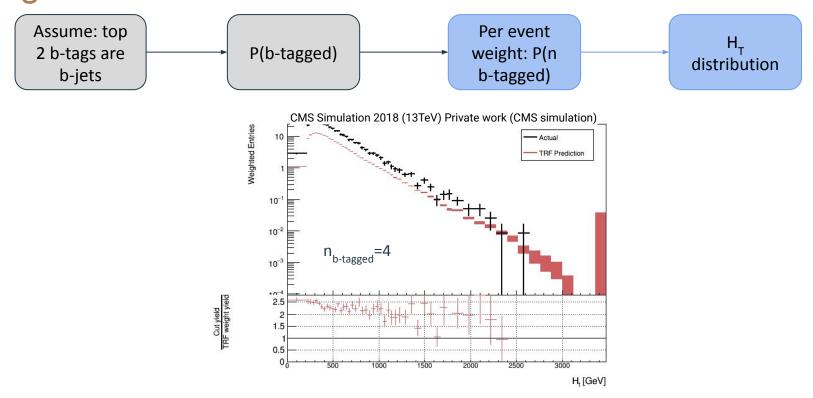
A Search for Vector-Like Leptons (VLLs)


10

A Search for Vector-Like Leptons (VLLs)


11

Tag Rate Function - Treat Simulation like Data



12

Tag Rate Function - Treat Simulation like Data

Tag Rate Function - Treat Simulation like Data

A Search for Vector-Like Leptons (VLLs)

New Analysis Tools

- Coffea (Columnar Object Framework For Effective Analysis)
 - Prototype package aimed at making high energy analysis easier and at reducing the time it takes to get from data to plots
- Elastic Analysis Facility (EAF)
 - Fermilab's multi-VO analysis facility
 - Suite of analysis tools accessible through a jupyter-hub based interface

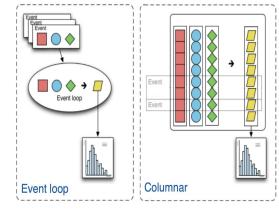


Diagram showing the difference between columnar and event loop programming (Nick Smith) [F2]

Fermilab Elastic Analysis Facility Ecosystem

Diagram of the EAF ecosystem [F3]

Summary

- Ultimate goal is to use the predicted background distribution for ttbar distribution in the signal region
 - Produce a sensitivity plot for Run II with all backgrounds
- To-do
 - Need to understand the offsets in the tag rate predictions
 - Planning to determine a suitable sideband region to extract normalization from
 - \circ Determine if using H_t results in the best sensitivity
 - Explore machine learning techniques to discriminate between signal and background
 - Perform the analysis for full Run II

Thank you!

Backup Slides

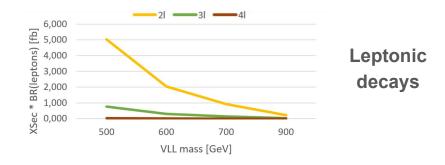
4321 Model

- Extends the Standard Model to SU(4) x SU(3)' x SU(2), x U(1)'
- Ultraviolet complete
 - Works at arbitrarily large energies
- VLLs come in an electroweak doublet
 - Branching fractions depend on their mass
- VLLs are non-chiral
 - Expected not to couple to the Higgs
- Leptoquarks
 - Couple strongly to the third generation
 - Mediate VLL decays
 - Interact with both leptons and quarks
 - Have baryon and lepton numbers

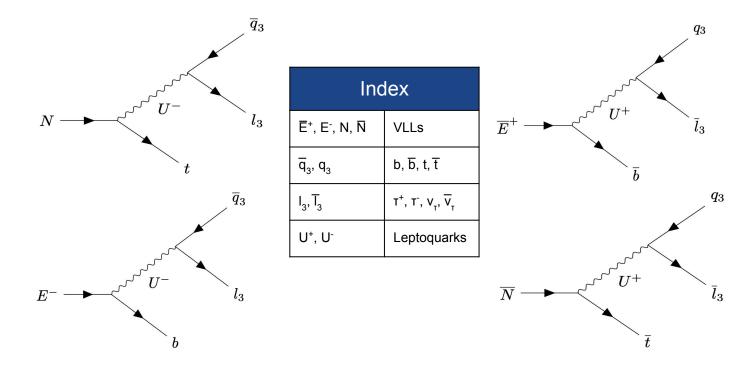
Lepton Non-Universality

- Leptons have the same coupling to gauge bosons according to the Standard Model
 - Interactions between leptons and bosons should be identical -> lepton universality
- Evidence for non-universality come from B anomalies
 - Measured the B meson decay to D and D* mesons
 - Deviates from the SM prediction

$$R(D^{(*)}) = \frac{BR(B \to D^{(*)}\tau\nu_{\tau})}{BR(B \to D^{(*)}l\nu_l)}$$


Anomalous Magnetic Moment

- Magnetic moment is a measure of magnetic strength
 - Also called magnetic dipole moment
 - Refers to component of the magnetic moment that can be represented by the equivalent dipole
 - Determines magnitude of torque an object experiences in a magnetic field
- Anomalous moment is contribution of quantum mechanic affect
- Can be explained by mixing with VLLs
 - Produces contributions to electron and muon anomalous magnetic moments
 - Many theories exist for VLLs reconciling the moments


$$\Delta \equiv a_{\mu}^{exp} - a_{\mu}^{SM} = 268(63)(43)x10^{-11}$$
$$\Delta \equiv a_{e}^{exp} - a_{e}^{SM} = -88(28)(23)x10^{-14}$$

VLL Signal

- A previous analysis looked into the hadronic channels and saw an excess
 - Scanned mass range from 500 to 1050 GeV
 - Leptonic channels are interesting to investigate since they are orthogonal
- This analysis will probe the leptonic channel
 - Similar mass range 500 to 1000 GeV
 - \circ \quad Look into the dilepton final states

VLL Signal and Background

Works Cited:

Selection Criteria - Objects

Jets	р _т > 30 GeV	η < 2.4	mediumJetIDbit	$\Delta R_{e,\mu,\tau} > 0.4$
Electrons	р _т > 10 GeV	η < 2.4	CutBasedIdTight	eleEtaGapVeto
Muons	р _т > 10 GeV	η < 2.4	tightId	pfRellso04_all < 0.25
MET	> 40 GeV	-	-	_

- 2018 Run II data
- These criteria ensure good quality of final state objects
- $\Delta R_{\underline{e},\mu,\tau}$: Distance between jet and lepton, reject jets that are too close to leptons eleEtaGapVeto : Reject electrons located in the gap between endcap and barrel
- pfRellso04 all : Particle flow relative isolation, make sure muon is a prompt muon

Selection Criteria - Events

- Collected a lot of data from CMS, need to narrow down the events where we expect signal
 - Look at simulation to determine the relevant kinematic cuts and triggers Ο
- Cut variables
 - Exactly 2 leptons Ο
 - Leading lepton p_{T} > 30 GeV: transverse momentum of the lepton with the highest value of Ο transverse momentum
 - M_{μ} > 20 GeV: invariant mass of the two leptons, ee and $\mu\mu$ Ο
 - Z peak veto m_{II} < 76 GeV and m_{II} > 106 GeV: reject masses around z-peak of 91 GeV, ee 0 and µµ
 - Ο
 - n_{jets} > 3: Number of jets in the event Leading Jet p_{τ} > 100 GeV: transverse momentum of the jet with the highest value of Ο transverse momentum
 - Sub Leading Jet p_{τ} > 50 GeV: transverse momentum of the jet with the second highest value Ο of transverse momentum
 - H_{τ} > 300 GeV: Sum of all the jets transverse momentum in an event Ο

CMS Coordinate System

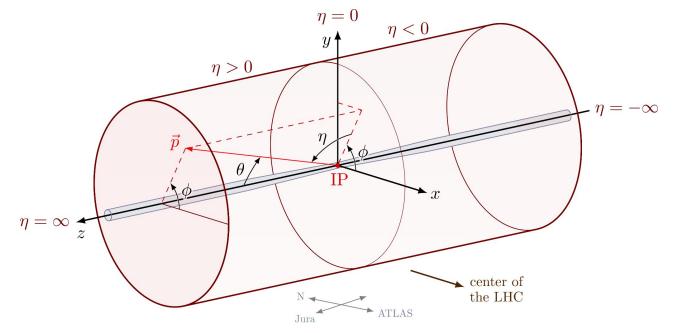


Figure 17: Diagram of the coordinate system used in the CMS [F17]

A Search for Vector-Like Leptons (VLLs)

Background Types

- tt-bar
 - t and t-bar are pair produced and then decay through a W, each can decay to a lepton, lepton neutrino and b-jet
- Drell-Yan + Jets
 - Quark and antiquark from two hadrons annihilate and create two leptons through either a virtual photon or Z, jets produced by the hadrons
- Di-boson production
 - Pair produced bosons (WW, ZZ, ZW) decay to leptons and jets
- Tri-boson production
 - Production of 3 bosons (WWW,ZZZ,WWZ), decay to leptons and jets
- tt(V/H)+jets
 - t and t-bar are pair produced along with a boson or Higgs, the t and t-bar can decay through the W to lepons, lepton neutrinos, and b-jets while the boson or higgs also can decay hadronically or leptonically
- tt+VV
 - t and t-bar are pair produced along with a pair of bosons or a pair of higgs, similarly the t and t-bar can decay leptonically through a W and the bosons/Higgs can decay hadronically or leptonically
- 4-top
 - Two pair produced top quarks that decay like tt-bar through W bosons and can produce leptons, b-jets, and other particles

VLL Background

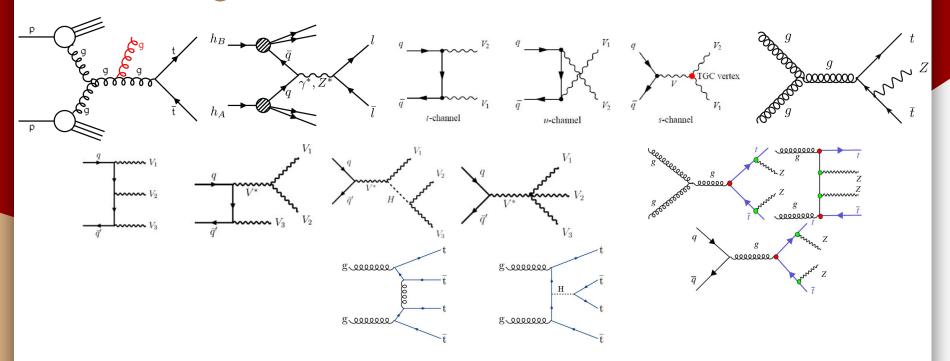


Figure 18: Feynman diagrams of all the backgrounds. From left to right: (1st row) tt-bar [F18], Drell Yan + Jets [F19], Di-Boson [F20], tt(V/H) + Jets [F22] (2nd row) Tri-Boson [F21], ttVV [F23] (3rd row) 4-top [F24]

A Search for Vector-Like Leptons (VLLs)

Works Cited - Papers and Sites

[P1] <u>Review+(partial) combination of VLQ + VLL + HNL (short and long-lived)</u>

[P2] Search for pair-produced vector-like leptons in final states with third-generation leptons and at least three b

<u>quark jets in proton-proton collisions at $\sqrt{s} = 13$ TeV</u>

[P3] Why should we search for vector-like leptons?

[P4] New leptons with exotic decays: collider limits and dark matter complementarity

[P5] Vector-like Leptons: Muon g-2 Anomaly, Lepton Flavor Violation, Higgs Decays, and Lepton Non-Universality

[P16] Coffea Documentation

[P17] Gauge leptoquark as the origin of B-physics anomalies

[P18] Maximal flavour violation: a Cabibbo mechanism for leptoquarks

Works Cited - Figures/Other

[F1] <u>R(D) vs R(D*) Plot</u>

[F2] <u>ttbar</u>

[F3] Columnar vs Loop Programming

[F4] EAF Documentation