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The problem of tracking
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• In a silicon detector, charged particles leave an energy deposits (hits). 
Track reconstruction assigns each hit to a track. 

• Very CPU-intensive and challenging to deal with increased pile-up in 
HL-LHC => Seek GPU-powered solutions.

• Study Graph Neural Network (GNN) approach to track reconstruction, 
using 𝑡 ̅𝑡 events simulated with 𝜇 = 200. Compare the performance 
with that of the current algorithm under several physics metrics.

https://cds.cern.ch/record/2729668/files/LHCC-G-178.pdf

ATLAS GNN tagger 
takes 2 overall jet 
features, and 21 
track features
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Overview of the GNN4ITk pipeline

• Represent a pp-collision event as a graph. Treat each hit as a node, and each edge connecting 2
nodes as a hypothesis that they are 2 consecutive hits on a particle track.

• Classify edges using a Graph Neural Network (GNN), then segment the graph to build track
candidates.

• Git repo, documentation (WIP).
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https://gitlab.cern.ch/gnn4itkteam/commonframework
https://atlas-gnn-tracking.docs.cern.ch/


Graph construction
Data driven approach: Module Map

• Build a map of detector modules, where a triplet of
hits ABC means at least 1 true track has passed
sequentially through A, B, and C.

• Register a triplet ABC if all 3 modules get hit in the
event.

Machine learning approach: Metric Learning

• Train a DNN to project hits to an embedding space,
such that Hits from the same particles are near each
other by L2-distance. Constructs graphs using kNN.

• Clean up easy fake edges by a DNN or a shallow GNN
to reduce graph size and fit on GPU.
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GNN edge classification 
1. Encode nodes features (position, charge count, local 

measurements, etc.) to a latent node vector 𝑣!" = 𝜙# 𝑥!

2. Concatenate node vectors of two hits connected by an 
edge and encode to edge vector, 𝑒!$" = 𝜙%(𝑣!", 𝑣$")

3. Aggregate edge vectors, acting as messages between 
nodes, 𝑚!

" = ∑$ 𝑒!$"

4. Update node features using aggregated message, 𝑣!& =
𝜓#&(𝑣!", 𝑚!

"). Update edge features using updated node 
features, 𝑒!$& = 𝜓%&(𝑣!&, 𝑣$&, 𝑒!$" ).

5. Repeat steps 3 and 4 𝒏 = 𝟖 times.

6. Compute an edge score representing the probability of 
being a true edge, 𝑠!$ = 𝜓'(𝑒!$()

Graph Graph Neural
Network

𝑣!" 𝑣#"

𝑣$" 𝑣%"

𝑒&!" 𝑒&#"

𝑒&$" 𝑒&%"

Edge Scores

1 2 . 1 2 . 2 3 6

𝑣!"#$ = 𝜙%"#$(𝑣!" , Σ𝑒!&" )

𝑣$" 𝑣'"

𝑣(" 𝑣)"
𝑣*" node vector
𝑒*&" edge vector
at iteration 𝑘

𝑒!$" 𝑒!'"

𝑒!(" 𝑒!)"

Battaglia, Peter, et al. 
Interaction network
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Input graph (left) and classified graph (right). Fake = blue. True = orange

https://arxiv.org/abs/1612.00222
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Physics performance of the GNN4ITk pipeline

• Perform a global 𝜒! fit on GNN track
candidates. Evaluate the performance and
compare to that of tracks found by the CKF.

• GNN tracks are selected using ATLAS
requirements, with some selection cuts
loosen.
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Track Candidates
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Tracking efficiency 

• Similarly efficient to the CKF in the 
central and forward region. 

• Most inefficiency is located near 𝜂 ≈
1.8. Overall competitive performance.

• Tracking efficiency inside jets 
approaching the CKF, with relatively 
uniform level over Δ𝑅 (distance to jet 
center) and jet 𝑝" .

Tracking efficiency in ttbar events

Tracking efficiency in jets

1 2 . 1 2 . 2 3 9T .  M .  P H A M ,  U N I V .  O F  W I S C O N S I N - M A D I S O N



Track parameter resolution

• Good impact parameter resolution 
(𝜎 𝑑# , 𝜎(𝑧#)), comparable with 
CKF.

• Achieve 𝑝" resolution compatible 
with the CKF.
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Summary 

• We present the first ML pipeline for charged-particle track reconstruct from detector hits.

• Demonstrate a competitive physics performance of this pipeline on data simulated under 𝜇 = 200 condition 
and the latest detector geometry, in comparison with the current algorithm.

• Future work:
• Machine learning optimization, further improving GNN reconstruction efficiency and purity.

• Validate performance on other physics processes: Z(ll), dark matter, long-lived particles, etc.

• Timing study and optimization, regional tracking, quantization, model optimization.

• Integration into ATLAS analysis software package (Athena) and full-chain testing.
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Back-up slides
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Graph construction efficiency
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• Drop in efficiency at low 𝜂 due to poor barrel 
strip resolution (will discuss further!)

• Drop in efficiency at high 𝑝" due to low 
training statistics
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GNN edge classification performance

(Left) Edge classification Efficiency, defined by $!"
$!

and (right) Purity, defined as $!"
$"

as functions of 𝜂. 
The GNN correctly identifies most True edges while rejecting the majority of Fake edges, evidenced by 
high efficiency and purity.
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Metric learning intuition

• Encode / embed input 
into N-dimensional space

• Reward (low loss) 
matching pairs within 
unit distance

• Punish (high loss) 
mismatching pairs within 
unit distance

• Repeat for many pairs

MLP MLP

Repulsive training

Source Target Source Target

Attractive training

“Contrastive” hinge loss

𝑦 = −1
𝑦 = 1

Δ = 1 Δ = 1

𝑥

𝑥
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Metric learning
• The idea: Teach an MLP to embed spacepoint features (spatial and cell information)

• In this embedded space, all doublets in a given particle track are trained to be 
near each other (Euclidean distance 𝒙), using a contrastive loss function 𝐿:

• A hit in a track is trained to be closest to its preceeding and succeeding track hits

r

Embed into learned 
latent space

Connect all spacepoints
within radius r

All spacepoint pairs
joined into graph

Metric 
Learning

Module
Map

or

Hits Graph

𝐿 =
𝑥, if true pair

max 0, 𝑟 − 𝑥 , if false pair
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Metric learning - filtering

• Output graph of metric learning is impure: 0.2%

• Can pass edges through a simple MLP filter to filter out the easy fakes

• Improves purity to 2%, so graph can be trained entirely on a single GPU
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Loss function design
• The target of the GNN and track reconstruction is edges from 

primary particles with pT>1 GeV that have left at least 3 hits on different 
modules in the detector (see slide 12) 

• Have very small set of target edges (1-2% of edges are true target 𝑡9:;)

• Solution: 𝑡9:; 𝑦 = 1weighted up by ×10, sequential background 𝑡̃9:; masked, 
all others 𝑦 = 0
• Weighting gives much better performance at high-efficiency

• Masking gives much better performance around the 1 GeV cutoff

Graph Graph Neural
Network
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Technical efficiency
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Standard matching: At least 50% of the space
points (hits) in the track candidate belongs to the
target particle (50% hit purity).
Strict matching: 100% hit purity and 100% of the
hits in the particle found in the track candidate
(100% hit efficiency).
Fake rate is 𝑂(10%&) using standard truth matching
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