

A deep learning framework for chargedparticle track reconstruction in the ATLAS ITk

MINH-TUAN PHAM ON BEHALF OF THE GNN4ITK PROJECT

The problem of tracking

- In a silicon detector, charged particles leave an energy deposits (hits). Track reconstruction assigns each hit to a track.
- Very CPU-intensive and challenging to deal with increased pile-up in HL-LHC => Seek GPU-powered solutions.
- Study Graph Neural Network (GNN) approach to track reconstruction, using $t\bar{t}$ events simulated with $\langle \mu \rangle = 200$. Compare the performance with that of the current algorithm under several physics metrics.

Detector	$\langle \mu \rangle$	inner tracking	muon spectrometer and calorimeter	combined reconstruction	monitoring	total
Run 2	90	1137	149	301	106	1693

https://cds.cern.ch/record/2729668/files/LHCC-G-178.pdf

ATLAS GNN tagger takes 2 overall jet features, and 21 track features ATL-PHYS-SLIDE-2023-048

Jet Input	Description	
$p_{\rm T}$ Jet transverse momentum		
η	Signed jet pseudorapidity	
Track Input	Description	
q/p	Track charge divided by momentum (measure of curvature)	
$d\eta$	Pseudorapidity of the track, relative to the jet η	
$\mathrm{d}\phi$	Azimuthal angle of the track, relative to the jet ϕ	
d_0	Closest distance from the track to the PV in the longitudinal plane	
$z_0 \sin \theta$	Closest distance from the track to the PV in the transverse plane	

14.12.23

The problem of tracking

- In a silicon detector, charged particles leave an energy deposits (hits). Track reconstruction assigns each hit to a track.
- Very CPU-intensive and challenging to deal with increased pile-up in HL-LHC => Seek GPU-powered solutions.
- Study Graph Neural Network (GNN) approach to track reconstruction, using $t\bar{t}$ events simulated with $\langle \mu \rangle = 200$. Compare the performance with that of the current algorithm under several physics metrics.

Detector	$\langle \mu \rangle$	inner tracking	muon spectrometer and calorimeter	combined reconstruction	monitoring	total
Run 2	90	1137	149	301	106	1693

https://cds.cern.ch/record/2729668/files/LHCC-G-178.pdf

ATLAS GNN tagger takes 2 overall jet features, and 21 track features ATL-PHYS-SLIDE-2023-048

Jet Input	Description	
$p_{\rm T}$ Jet transverse momentum		
η	Signed jet pseudorapidity	
Track Input	Description	
q/p	Track charge divided by momentum (measure of curvature)	
$d\eta$	Pseudorapidity of the track, relative to the jet η	
$\mathrm{d}\phi$	Azimuthal angle of the track, relative to the jet ϕ	
d_0	Closest distance from the track to the PV in the longitudinal plane	
$z_0 \sin \theta$	Closest distance from the track to the PV in the transverse plane	

Overview of the GNN4ITk pipeline

- Represent a pp-collision event as a graph. Treat each hit as a node, and each edge connecting 2 nodes as a <u>hypothesis that they are 2 consecutive hits</u> on a particle track.
- Classify edges using a Graph Neural Network (GNN), then segment the graph to build track candidates.
- <u>Git repo</u>, <u>documentation</u> (WIP).

Graph construction

Machine learning approach: Metric Learning

- Train a DNN to project hits to an embedding space, such that Hits from the same particles are near each other by L_2 -distance. Constructs graphs using kNN.
- Clean up easy fake edges by a DNN or a shallow GNN to reduce graph size and fit on GPU.

Data driven approach: Module Map

- Build a map of detector modules, where a triplet of hits ABC means at least 1 true track has passed sequentially through A, B, and C.
- Register a triplet ABC if all 3 modules get hit in the event.

GNN edge classification

- 1. Encode nodes features (position, charge count, local measurements, etc.) to a latent node vector $v_i^0 = \phi_v(x_i)$
- 2. Concatenate node vectors of two hits connected by an edge and encode to edge vector, $e_{ij}^0 = \phi_e(v_i^0, v_j^0)$
- 3. Aggregate edge vectors, acting as messages between nodes, $m_i^0 = \sum_j e_{ij}^0$
- 4. Update node features using aggregated message, $v_i^1 = \psi_v^1(v_i^0, m_i^0)$. Update edge features using updated node features, $e_{ij}^1 = \psi_e^1(v_i^1, v_j^1, e_{ij}^0)$.
- 5. Repeat steps 3 and 4 n = 8 times.
- 6. Compute an edge score representing the probability of being a true edge, $s_{ij} = \psi_d(e_{ij}^n)$

Input graph (left) and classified graph (right). Fake = blue. True = orange

Track construction

1. Connected Components

2. Walkthrough, a.k.a "Wrangler"

accounting for expected multiple scattering effects with track parameter (p_T, θ, φ, d₀, z₀)

Physics performance of the GNN4ITk pipeline

- Perform a global χ^2 fit on GNN track candidates. Evaluate the performance and compare to that of tracks found by the CKF.
- GNN tracks are selected using ATLAS requirements, with some selection cuts loosen.

Requirements	Pseudorapidity interval			
	$ \eta < 2.0$	$2.0 < \eta < 2.6$	$2.6 < \eta < 4.0$	
pixel + strip hits	≥ 9	≥ 8	≥ 7	
pixel hits	≥ 1	≥ 1	≥ 1	
holes	≤ 2	≤ 2	≤ 2	
p_T [MeV]	> 1000			
$ d_0 $ [mm]	≤ 2.0	≤ 2.0	≤ 10.0	
$ z_0 $ [cm]	≤ 20.0	≤ 20.0	≤ 20.0	

For GNN4ITk 3 cuts are looser: pixel + strip hits \geq 8, $|d_0| < 20 \text{ mm}$ $|z_0| < 25 \text{ cm}$

ATL-PHYS-PUB-2021-024

Tracking efficiency

- Similarly efficient to the CKF in the central and forward region.
- Most inefficiency is located near |η| ≈
 1.8. Overall competitive performance.
- Tracking efficiency inside jets approaching the CKF, with relatively uniform level over ΔR (distance to jet center) and jet p_T .

Tracking efficiency in ttbar events

Track parameter resolution

σ(d₀) [μm]

- Good impact parameter resolution $(\sigma(d_0), \sigma(z_0))$, comparable with CKF.
- Achieve p_T resolution compatible with the CKF.

Summary

- We present the first ML pipeline for charged-particle track reconstruct from detector hits.
- Demonstrate a competitive physics performance of this pipeline on data simulated under $\langle \mu \rangle = 200$ condition and the latest detector geometry, in comparison with the current algorithm.
- Future work:
 - Machine learning optimization, further improving GNN reconstruction efficiency and purity.
 - Validate performance on other physics processes: Z(ll), dark matter, long-lived particles, etc.
 - Timing study and optimization, regional tracking, quantization, model optimization.
 - Integration into ATLAS analysis software package (Athena) and full-chain testing.

Back-up slides

Graph construction efficiency

• Drop in efficiency at low η due to poor barrel strip resolution (will discuss further!)

12.12.23

training statistics

GNN edge classification performance

(Left) Edge classification Efficiency, defined by $\frac{N_{TP}}{N_T}$ and (right) Purity, defined as $\frac{N_{TP}}{N_P}$ as functions of η . The GNN <u>correctly identifies</u> most True edges while <u>rejecting</u> the majority of Fake edges, evidenced by high efficiency and purity.

Metric learning

- The idea: Teach an MLP to embed spacepoint features (spatial and cell information)
- In this embedded space, all doublets in a given particle track are **trained to be near each other (Euclidean distance** *x***)**, using a contrastive loss function *L*:
- A hit in a track is trained to be **closest** to its preceeding and succeeding track hits

Embed into learned latent space

Connect all spacepoints within radius r

 $L = \begin{cases} x, & \text{if true pair} \\ \max(0, r - x), & \text{if false pair} \end{cases}$

Metric learning – filtering

- Output graph of metric learning is impure: 0.2%
- Can pass edges through a simple MLP filter to filter out the easy fakes
- Improves purity to 2%, so graph can be trained entirely on a single GPU

Metric Learning

Loss function design

- The target of the GNN and track reconstruction is edges from primary particles with pT>1 GeV that have left at least 3 hits on different modules in the detector (see slide 12)
- Have very small set of target edges (1–2% of edges are true target t_{Seq})
- Solution: $t_{Seq} \ y = 1$ weighted up by $\times 10$, sequential background \tilde{t}_{Seq} masked, all others y = 0
 - Weighting gives much better performance at high-efficiency
 - Masking gives much better performance around the 1 GeV cutoff

Technical efficiency

Standard matching: At least 50% of the space points (hits) in the track candidate belongs to the target particle (50% hit purity).

Strict matching: 100% hit purity and 100% of the hits in the particle found in the track candidate (100% hit efficiency).

Fake rate is $O(10^{-3})$ using standard truth matching

21