

A deep learning framework for chargedparticle track reconstruction in the ATLAS/ITk

MINH- TUAN PHAM ON BEHALF OF THE GNN4ITK PROJECT

The problem of tracking

- In a silicon detector, charged particles leave an energy deposits (hits). Track reconstruction assigns each hit to a track.
- Very CPU-intensive and challenging to deal with increased pile-up in HL-LHC => Seek GPU-powered solutions.
- Study Graph Neural Network (GNN) approach to track reconstruction, using $t\bar{t}$ events simulated with $\langle \mu \rangle = 200$. Compare the performance with that of the current algorithm under several physics metrics.

https://cds.cern.ch/record/2729668/files/LHCC-G-178.pdf

ATLAS GNN tagger takes 2 overall jet features, and *21 track features* ATL-PHYS-SLIDE-2023-048

The problem of tracking

- In a silicon detector, charged particles leave an energy deposits (hits). Track reconstruction assigns each hit to a track.
- Very CPU-intensive and challenging to deal with increased pile-up in HL-LHC => Seek GPU-powered solutions.
- Study Graph Neural Network (GNN) approach to track reconstruction, using $t\bar{t}$ events simulated with $\langle \mu \rangle = 200$. Compare the performance with that of the current algorithm under several physics metrics.

https://cds.cern.ch/record/2729668/files/LHCC-G-178.pdf

Overview of the GNN4ITk pipeline

- Represent a pp-collision event as a graph. Treat each hit as a nodes as a hypothesis that they are 2 consecutive hits on a particle
- Classify edges using a Graph Neural Network (GNN), then segment candidates.
- Git repo, documentation (WIP).

Graph construction

Machine learning approach: Metric Learning

- Train a DNN to project hits to an embedding space, such that Hits from the same particles are near each other by L_2 -distance. Constructs graphs using kNN .
- Clean up easy fake edges by a DNN or a shallow GNN to reduce graph size and fit on GPU.

Data driven approach: **Module Map**

- Build a map of detector modules, where a triplet of hits ABC means at least 1 true track has passed sequentially through A, B, and C.
- Register a triplet ABC if all 3 modules get hit in the event.

GNN edge classification

- 1. Encode nodes features (position, charge count, local measurements, etc.) to a latent node vector $v_i^0 = \phi_v(x_i)$
- 2. Concatenate node vectors of two hits connected by an edge and encode to edge vector, $e_{ij}^0 = \phi_e(v_i^0, v_j^0)$
- 3. Aggregate edge vectors, acting as messages between nodes, $m_i^0 = \sum_j e_{ij}^0$
- 4. Update node features using aggregated message, $v^1_i =$ $\psi_v^1(v_i^0,m_i^0)$. Update edge features using updated node features, $e_{ij}^1 = \psi_e^1(v_i^1, v_j^1, e_{ij}^0)$.
- 5. Repeat steps 3 and 4 $n = 8$ times.
- 6. Compute an edge score representing the probability of being a true edge, $s_{ij} = \psi_d(e_{ij}^n)$

Input graph (left)

Track construction

1. Connected Components 2. Walkthrough, a.k.a "Wrangler"

accounting for expected multiple scattering effects

with track parameter $(p_T, \theta, \phi, d_0, z_0)$

Physics performance of the GNN4ITk pipeline

- Perform a global χ^2 fit on GNN track candidates. Evaluate the performance and compare to that of tracks found by the CKF.
- GNN tracks are selected using ATLAS requirements, with some selection cuts loosen.

For GNN4ITk 3 cuts are looser: pixel + strip hits ≥ 8 , $|d_0| < 20$ mm $|z_0|$ < 25 cm

ATL-PHYS-PUB-2021-024

Tracking efficiency

- Similarly efficient to the CKF in the central and forward region.
- Most inefficiency is located near $|\eta| \approx$ 1.8. Overall competitive performance.
- Tracking efficiency inside jets approaching the CKF, with relatively uniform level over ΔR (distance to jet center) and jet p_T .

Track parameter resolution

 $\alpha(d^0)$ [hm]

80 F

70 k

60 F

50

40

 30 20

10

- Good impact parameter resolution $(\sigma(d_0), \sigma(z_0))$, comparable with CKF.
- Achieve p_T resolution compatible with the CKF.

Summary

- We present the first ML pipeline for charged-particle track reconstruct from detector hits.
- Demonstrate a competitive physics performance of this pipeline on data simulated under $\langle \mu \rangle = 200$ condition and the latest detector geometry, in comparison with the current algorithm.
- Future work:
	- Machine learning optimization, further improving GNN reconstruction efficiency and purity.
	- Validate performance on other physics processes: Z(ll), dark matter, long-lived particles, etc.
	- Timing study and optimization, regional tracking, quantization, model optimization.
	- Integration into ATLAS analysis software package (Athena) and full-chain testing.

Back-up slides

Graph construction efficiency

• Drop in efficiency at low η due to poor barrel strip resolution (will discuss further!)

Drop in efficiency at high p_T due to low

training statistics

GNN edge classification performance

(Left) Edge classification **Efficiency**, defined by $\frac{N_{TP}}{N}$ N_T and (right) Purity, defined as $\frac{N_{TP}}{N}$ N_P as functions of η . The GNN correctly identifies most True edges while rejecting the majority of Fake edges, evidenced by high efficiency and purity.

Metric learning

- The idea: Teach an MLP to embed spacepoint features (spatial and cell information)
- In this embedded space, all doublets in a given particle track are trained to be near each other (Euclidean distance x), using a contrastive loss function L :
- A hit in a track is trained to be closest to its preceeding and succeeding track hits

 $L=$ x , if true pair $\max(0, r - x)$, if false pair

Metric learning - filtering

- Output graph of metric learning is impure: 0.2%
- Can pass edges through a simple MLP filter to filter out the easy fakes
- Improves purity to 2%, so graph can be trained entirely on a single GPU

Metric Learning

Loss function design

- The target of the GNN and track reconstruction is edges from primary particles with pT>1 GeV that have left at least 3 hits on different modules in the detector (see slide 12)
- Have very small set of target edges (1-2% of edges are true target t_{Seq})
- Solution: t_{Seq} $y = 1$ weighted up by $\times 10$, sequential background \tilde{t}_{Seq} masked, all others $y = 0$
	- Weighting gives much better performance at high-efficiency
	- Masking gives much better performance around the 1 GeV cutoff

Technical efficiency

Standard matching: At least 50% of the space points (hits) in the track candidate belongs to the target particle (50% hit purity).

Strict matching: 100% hit purity and 100% of the hits in the particle found in the track candidate (100% hit efficiency).

Fake rate is $O(10^{-3})$ using standard truth matching