Studying dense gluonic matter at LHCb

Tom Boettcher

University of Cincinnati

US LUA Meeting December 15, 2023

Tom Boettcher

Zooming in on the proton

Tom Boettcher

US LUA Meeting December 15, 2023 2 / 8

Parton Distribution Functions (PDFs)

PRD 103 (2021) 1, 014013

DGLAP equation

- x: momentum fraction carried by parton
- Nonperturbative initial conditions determined from global fits to data
- QCD radiation produces the parton sea

Gluon saturation

- At high densities, the proton will saturate, resulting in nonlinear (non-DGLAP) parton density evolution.
- Gluon density is highest at low x and is enhanced in heavy nuclei by $A^{1/3}$.

LHCb detector and coverage [Int. J. Mod. Phys. A 30 (2015) 07, 1530022]

- Forward acceptance: $2 < \eta < 5$
- **tracking**, **calorimetry**, **RICH**, **muon**
- Excellent vertex resolution $(10 50 \ \mu \text{m in } x \text{ and } y)$

Collect data in the p-going (low-x) and Pb-going (high-x) configurations

Charm hadron production [JHEP 10 (2017) 090]

The impact of LHCb data [EPJC 82 (2022) 6, 507]

Low-x nPDF are now constrained! \rightarrow **Overconstrain** to look for nonlinear evolution.

 $\pi^0,\,\eta,\,\mathrm{and}\,\,\eta^\prime\,\mathrm{production}$ [PRL 131 (2023) 042302, arXiv:2310.17326]

Precise and consistent description of the nucleus at low x across multiple observables.

LHCb is studying matter at unprecedented gluon densities!