Search for VLQs decaying to light SM quarks in Run 2 data from the ATLAS Experiment

Zackary Alegria **Oklahoma State University** US LUA Annual Meeting, Fermilab December 15, 2023

SM shortcomings as a motivation for new physics

• While successful in many aspects the SM is known to fall short of describing observable phenomena i.e. strong CP problem, dark matter, the hierarchy problem, etc.

From *The composite Nambu-Goldstone Higgs* by G. Panico and A. Wulzer

- Top quark dominant contribution to the loop diagrams \Rightarrow quadratic divergence
 - Introduce new heavy quark partner \Rightarrow cancel divergence

Zackary Alegria (OKState)

 $M_{H^2} \sim 10 - 9 = 1$ (in units of ~100 GeV squared)

What are VLQs?

- Mass is not obtained from the Higgs boson
- Decays to a SM boson (H/W/Z) and quark

Zackary Alegria (OKState)

 Color charged spin ½ particles whose left- and right-handed components transform the same under $SU(2) \times U(1)$

Wq+X Search

- Search for pair produced VLQs in the Wq+X final state assuming $\mathcal{B}(Q \rightarrow Wq) = 1$
 - Pair production provides model-agnostic lens
- Require: $Q \rightarrow Wq \rightarrow \ell \nu q$
- Optimize: $Q \rightarrow Wq \rightarrow q'q''q$

- Background contributions: W + jets (dominant), $t\bar{t}$, single top, multijet, Z + jets, diboson, ttV, and VH
- Run 1 analysis mass limit set at ~700 GeV
 - Expect to double this using full Run 2 data

Region Definitions

- 3 Control Regions
 - Multijet CR
 - $t\bar{t}$ CR ($t\bar{t}$ + singletop)
 - W + jets CR
- 5 Validation Regions
 - 1 Multijet VR
 - 2 *t* t VR
 - VR1 checks N_{W-tag} dependence
 - VR2 checks $\Delta R(W_{lep}, W_{had})$ dependence
 - 2W + jets
 - VR1 checks $\Delta R(W_{lep}, W_{had})$ dependence
 - VR2 checks N_{W-tag} dependence
- 2 Signal Regions

Zackary Alegria (OKState)

After applying preselection cuts define the following regions

• 1. Reconstruct VLQ candidates

Zackary Alegria (OKState)

VLQ Reconstruction Strategy

- Reconstruct neutrino
 - Calculate p_Z^{ν}
 - Use W boson mass as a constraint

VLQ Reconstruction Strategy

- Reconstruct neutrino
 - Calculate p_Z^{ν}
 - Use W boson mass as a constraint
- Reconstruct W bosons
 - Leptonic W: lepton + reconstructed neutrino
 - Hadronic W: leading W-tagged large-R jet
 - No W-tag \Rightarrow large-R jet mass closest to W mass

VLQ Reconstruction Strategy

- Reconstruct neutrino
 - Calculate p_Z^{ν}
 - Use W boson mass as a constraint
- Reconstruct W bosons
 - Leptonic W: lepton + reconstructed neutrino
 - Hadronic W: leading W-tagged large-R jet
 - No W-tag \Rightarrow large-R jet mass closest to W mass
- Reconstruct VLQ candidates
 - Use leading 3 small-R jets to reconstruct $VLQ \Rightarrow Minimize \Delta M_{VLO}$

- 1. Reconstruct VLQ candidates
- 2. Correct MC in control regions

Zackary Alegria (OKState)

Analysis Strategy

Modelling Checks: Multijet

Modelling Checks: tt

Zackary Alegria (OKState)

Modelling Checks: W + jets

Analysis Strategy

- 1. Reconstruct VLQ candidates
- 2. Correct MC in control regions
- 3. Fit both SRs with respect to mass of leptonically decaying VLQ (M_{VLO}^{lep}) by performing an S+B fit using TREx-fitter

Pre-/Post-fit Plots

Zackary Alegria (OKState)

Pre-fit

Post-fit

Zackary Alegria (OKState)

Limit Plot

 The analysis more than doubles the limit on the mass of the VLQ which decays to light quarks from the previous Run 1 result of ~700 GeV to ~1525 GeV

Zackary Alegria (OKState)

Conclusions

Zackary Alegria (OKState)

Backups

Preselection Cuts

- $N_{large-R jets} \ge 1$
- $N_{OR \ small-R \ jets} \geq 2$
- $p_T^{small-R jet} \ge 200 \text{ GeV}$
- $p_T^{\ell} \ge 60 \text{ GeV}$
- MET $\geq 250 \text{ GeV}$

Signal Region 1(2) Cuts

- N_{b-tag} (DL1r 70%) = 0
- $N_{W-tag} (80\%) \ge 1$
- $\Delta \phi(\text{lep, MET}) \le 0.5$
- $\Delta R(W_{lep}, W_{had}) \ge 0.8$
- $S_T \ge 2000 \text{ GeV}$

Signal Events

- $\Delta \phi (\text{jet}_0, \text{MET}) < 2.75 (\geq 2.75)$
 - Difference between lower and higher multijet content

S/√B

MET Trigger Studies

- 250 GeV
 - applying cut

Zackary Alegria (OKState)

Events

• Study displayed that MET trigger is fully efficient for MET \geq

Change in sensitivity is negligible when including trigger vs

Background Modelling Procedure

- Multijet has normalization corrected • W + jets and $t\bar{t}$ (and single top) are fit using exponential + offset $P_0 + e^{P_1 x}$
- Correction = $\frac{\text{data-other MC}}{\text{MC to correct}}$

Step	MC being Corrected	Other Corrections Used
1	Multijet	-
2	tī	(1)
3	W + jets	(1,2)
4	Multijet	(2, 3)
5	tī	(3, 4)
6	W + jets	(4, 5)

Signal Region Split

Singlet Model

- Evaluate results for the Singlet model when

Zackary Alegria (OKState)

 Analysis is also sensitive other VLQ branching ratios $\mathcal{B}(Q \to Hq): \mathcal{B}(Q \to Wq): \mathcal{B}(Q \to Zq) = 1:2:1$

Singlet Model Pre-/Post-fit Plots

Zackary Alegria (OKState)

Pre-fit

Events ATLAS Preliminary Data - √s = 13TeV, 140fb⁻¹ W+Jets 🔤 ttbar 100 Unblinded_SRs Singletop OtherBkgs SignalRegion2 Multijet /// Uncertainty Pre-Fit 80 60 40 20 Data / Pred. .25 0.75 0.5 200 400 600 800 1000 1200 1400 1600 1800 2000 Events ATLAS Preliminary VLQ_M1000 Data $100 - \sqrt{s} = 13 \text{TeV}, 140 \text{fb}^{-1}$ W+Jets ttbar Unblinded_SRs Singletop OtherBkgs SignalRegion2 Post-Fit Multijet /// Uncertainty 80 60 40 20 Data / Pred 0.5[∟] 0 200 400 600 800 1000 1200 1400 1600 1800 2000 $M_{VLQ}^{Lep}(GeV)$

Post-fit

Singlet Model Limit Plot

