

CICADA: Anomaly Detection for New Physics Searches at the CMS Level-1 Trigger

Ho Fung Tsoi (Wisconsin) for the CICADA Team in the CMS Collaboration US LUA 2023 Lightning Round Talk, Dec 12 – 15

CICADA: Calorimeter Image Convolutional Anomaly Detection Algorithm (AD at Calo)

Model/Implementation/Emulator/Firmware/Software/Hardware/Operations

- University of Wisconsin-Madison
 - Kiran Das, Sridhara Dasu, Tom Gorski, Alexander Savin, Varun Sharma, Ales Svetek, Jesra Tikalsky, Ho Fung Tsoi
- Princeton University
 - Pallabi Das, Kiley Kennedy, Andrew Loeliger, Luis Moreno, Isobel Ojalvo, Adrian Alan Pol

Background

CICADA: Calorimeter Image Convolutional Anomaly Detection Algorithm

What

• ML-based anomaly detection to search for rare/new physics in a model-independent way using low-level calo trigger info

Why

• Novel method to improve the current triggers

Where

• Calorimeter layer-1 trigger subsystem (CaloLayer-1) at the CMS Level-1 trigger

When

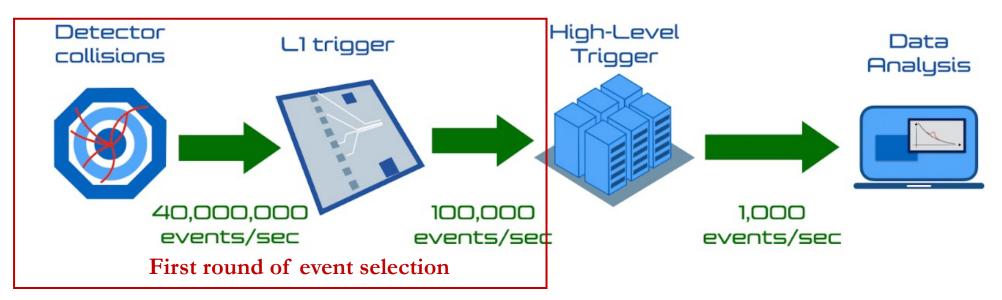
• Expecting Run 3 in 2024

Who

• Wisconsin/Princeton (members from the previous slide)

- https://cicada.web.cern.ch/
- <u>CMS-DP-2023-086</u>

Motivations

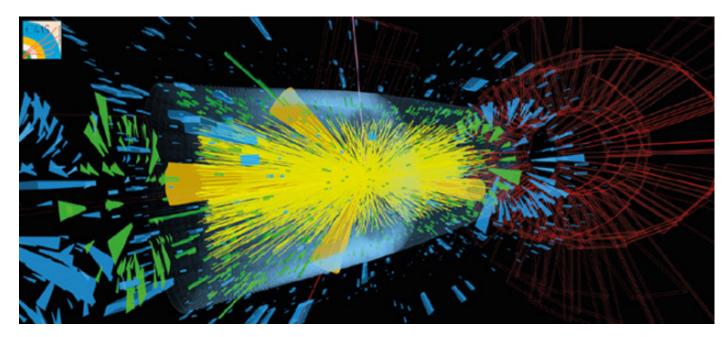


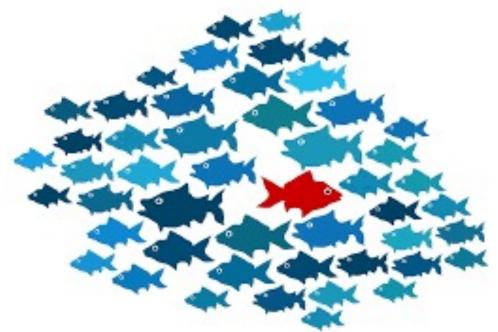
No BSM discovery at the LHC (yet!), three possibilities:

- New physics not possible at the current LHC energy scale
- Not enough data collected
- Maybe new physics already there, but we are looking at the wrong places or using wrong event selections

ML-based anomaly detection trigger

- Minimize human bias, completely data-driven
- ML can unearth unknown and complex correlation
- New physics searches in model-independent way



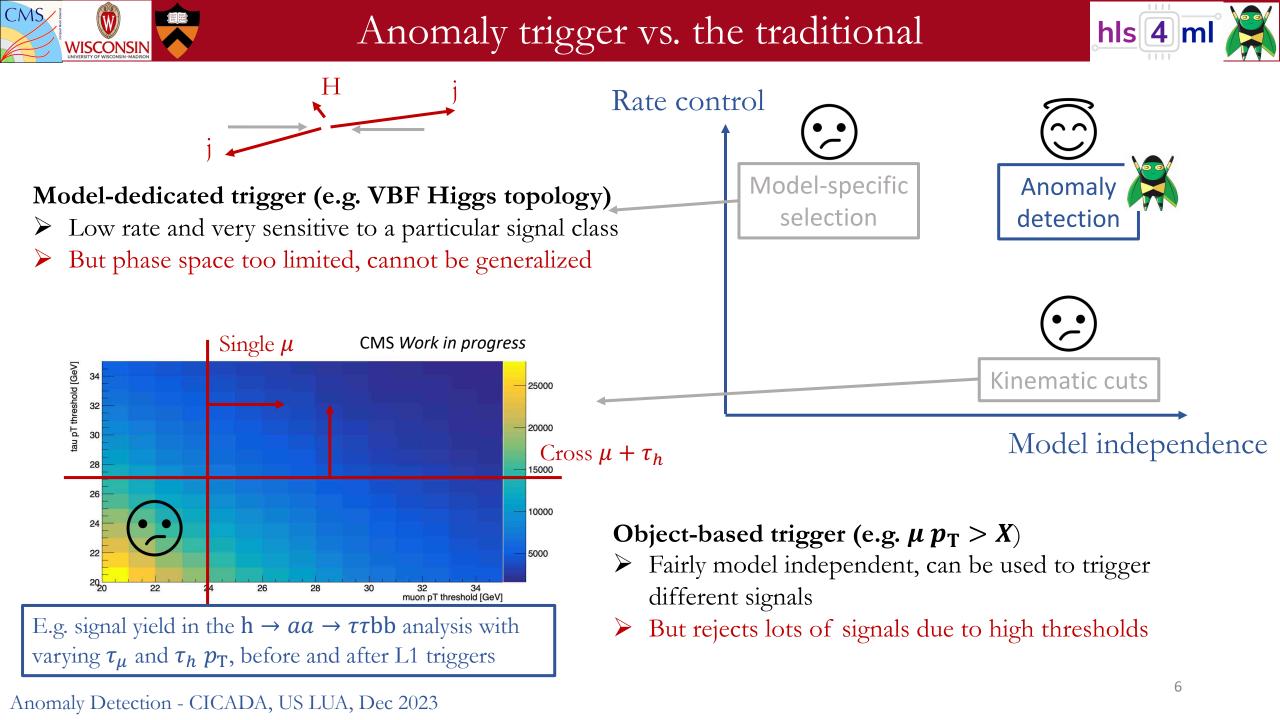


"Normal" events

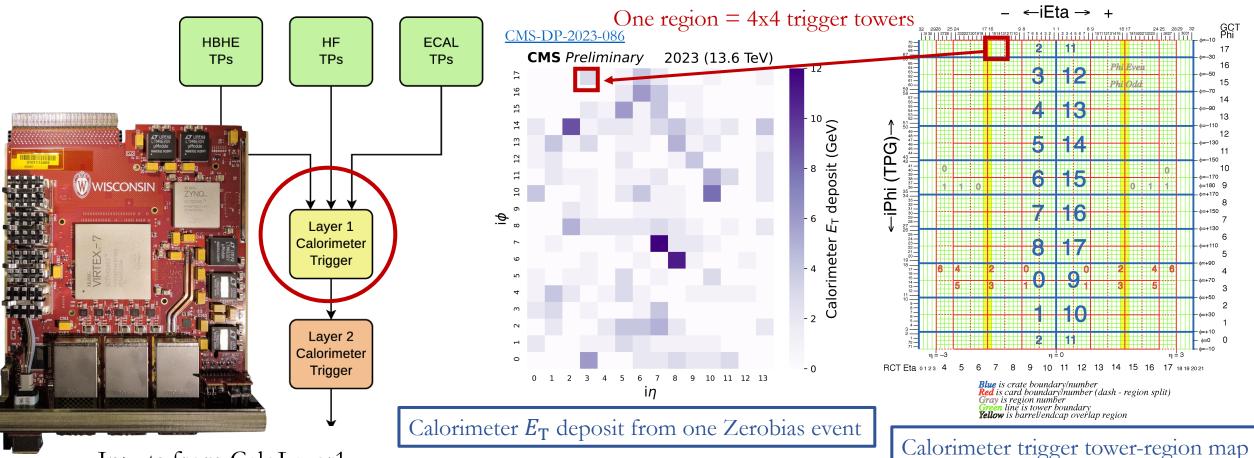
- Whatever processes dominating the collisions
- Large production cross sections at the LHCSoft QCD...

"Anomalous" events

- Whatever processes deviating from the "normal"
- SM with small cross sections and BSM
- ➢ Top, Higgs, SUSY, ...



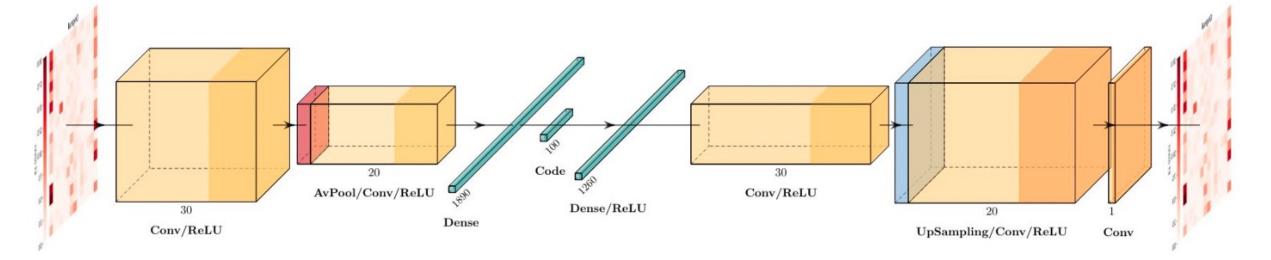
Input at CaloLayer-1



Inputs from CaloLayer1

- $18 \phi \times 14 \eta = 252$ regions in total
- Each region contains energy deposits from both ECAL and HCAL
- Summary of the energy distribution profile within the region
- Low-level information not dependent on jet reconstruction etc.

Model architecture: calo input \rightarrow encoder \rightarrow latent space \rightarrow decoder \rightarrow reconstructed input

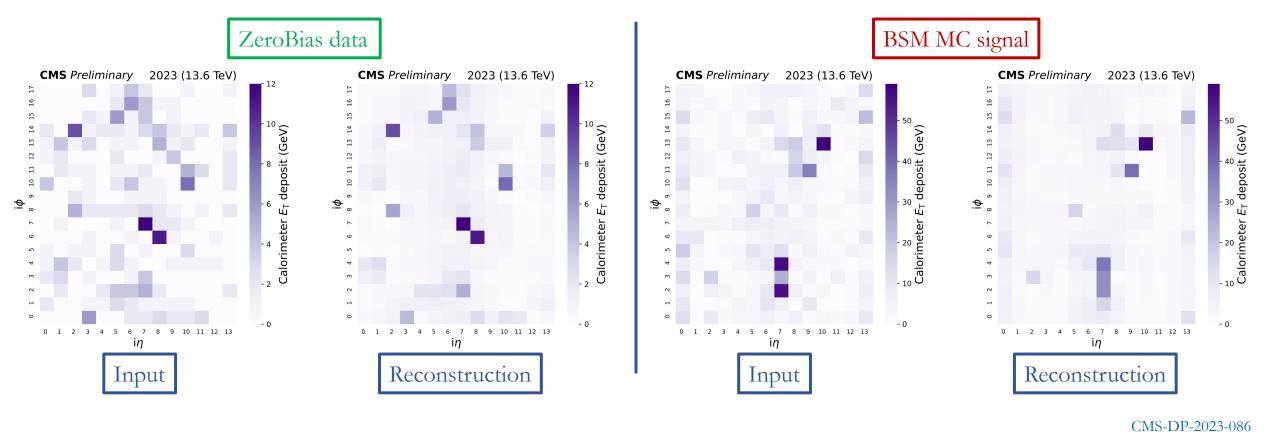


CICADA project: Calorimeter Image Convolutional Anomaly Detection Algorithm <u>https://cicada.web.cern.ch/</u>

Autoencoder-based anomaly detection

- Input is 2D tensor from the calorimeter region energy information
- Encoder and decoder are convolutional neural networks
- Unsupervised learning: train only on ZeroBias data to learn input reconstruction

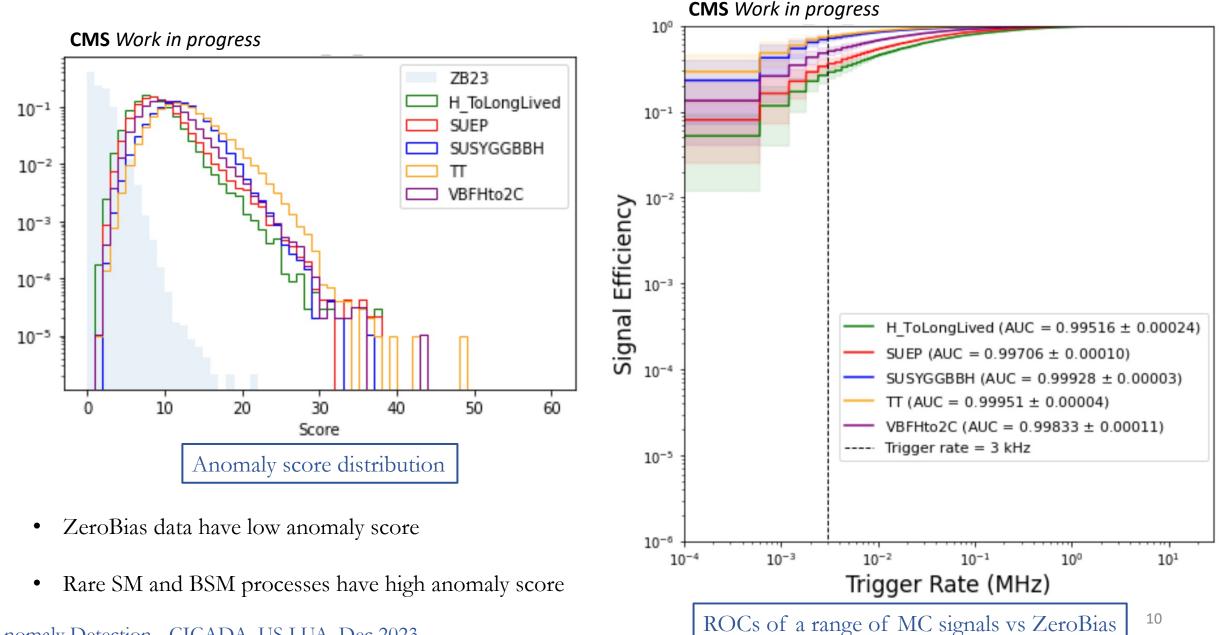
Model expectation: reconstruction



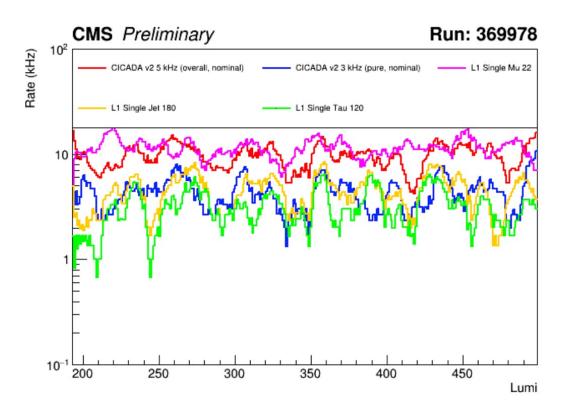
Expectation:

- **Good reconstruction** on normal events (ZeroBias used for training)
- **Bad reconstruction** on anything else such as rare SM or BSM signals (never seen in training) Goal:
- Use metric like the mean-squared error MSE(input, output) as anomaly score to trigger on anomalous events

Score distributions and ROCs



Stability as a trigger



CMS Preliminary 2023 (13.6 TeV) Rate (kHZ) RunB, 5 kHz Threshold: 7.38 10⁴ RunC, 5 kHz Threshold: 7.65 10³ RunD, 5 kHz Threshold: 8.07 10² 10 10- 10^{-2} 10^{-3} 30 10 20 40 50 0 CICADA score

<u>CMS-DP-2023-086</u>

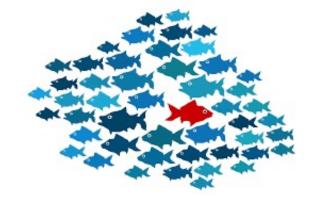
- Stable trigger rate over a run
- Stability verified and comparable to existing standard L1 seeds

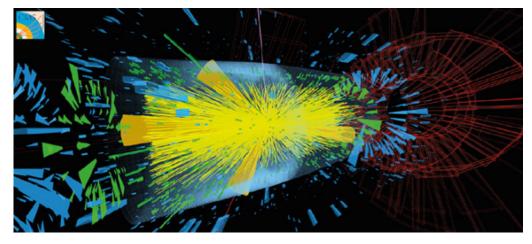
- Stable trigger rate across different runs
- Flexible trigger: tunable threshold available to adapt changing run conditions

• CICADA

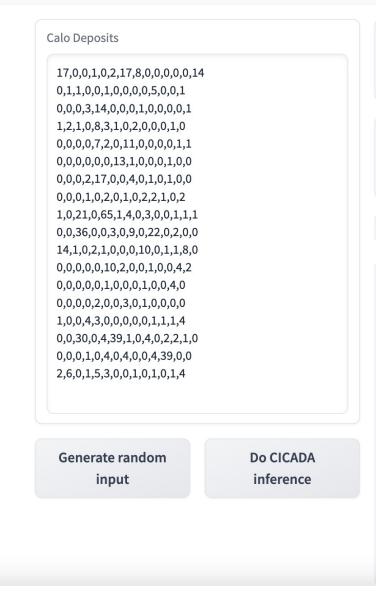
- Novel trigger at L1 using ML-based anomaly detection
- Search for rare/new physics in one place
- Model-independent
- Demonstrated physics sensitivity
 - Sensitive to a wide range of rare SM and BSM signals
 - Favoring high object multiplicity final states in general
 - Does catch more signals that are otherwise rejected by the current triggers
- Demonstrated trigger capacity
 - Tunable threshold for flexible rate control
 - Stable rates over a run and across different runs
- Looking forward to the production starting from 2024

Thank you for your attention!





🤗 Spaces 🛛 🕷 cicada-project / cicada-demo 🖆 🏾 🖓 like 🖉 🚺 🔹 Running 🕁



CICADA Anomaly Score for CICADA v1

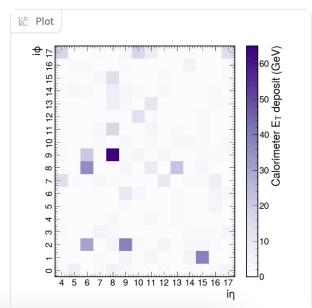
35.90625

CICADA Anomaly Score for CICADA v2

71.03125

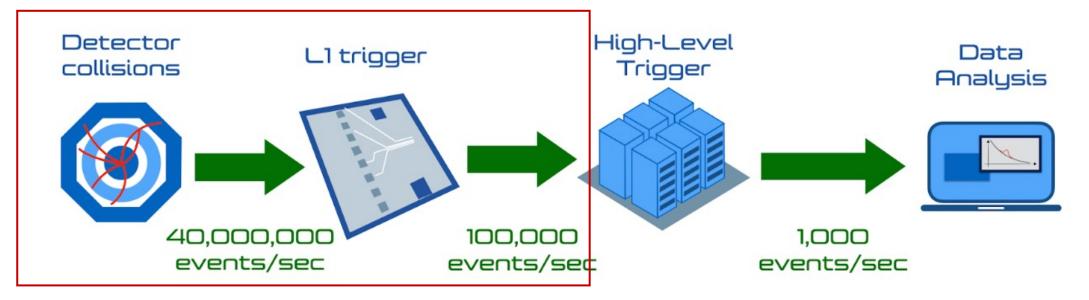
Calorimeter Input Saliency Map for CICADAv1

Saliency Map for CICADAv2



https://cicada.web.cern.ch/

Challenges at L1



Fast trigger decision to fit the buffering system

Extremely low latency < O(1) μ s

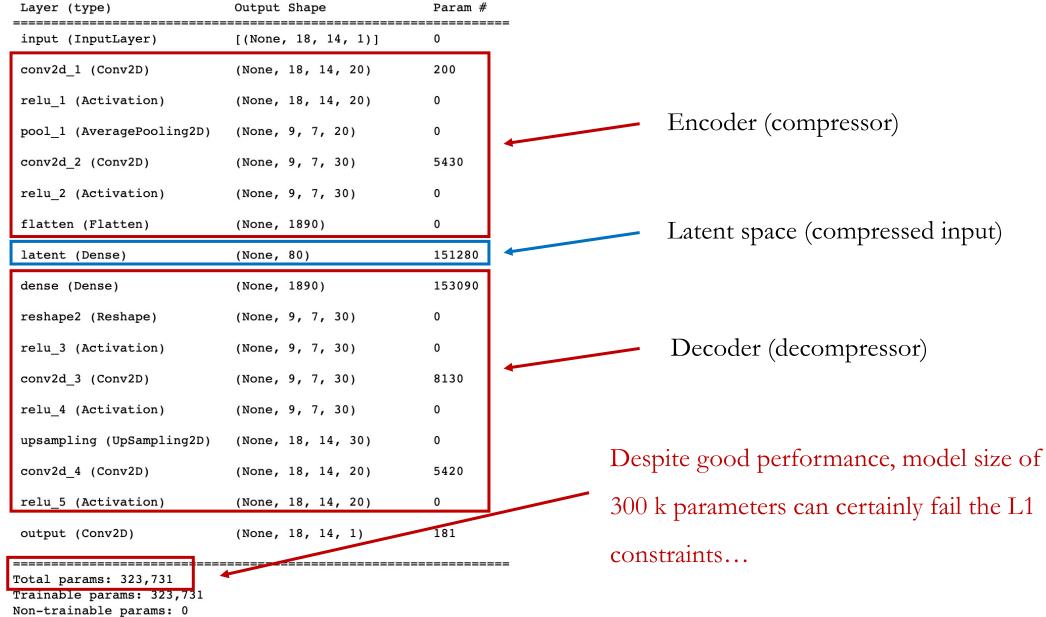
Running on high-speed custom hardware at the edge ➤ Extremely tight resources from a single FPGA board

Data rate reduction from 40 MHz to 100 kHz

Extremely low background rate $< O(10^{-4})$ demanded

→ Solved by model compression tricks to downscale the model size while preserving model performance

Naïve autoencoder model



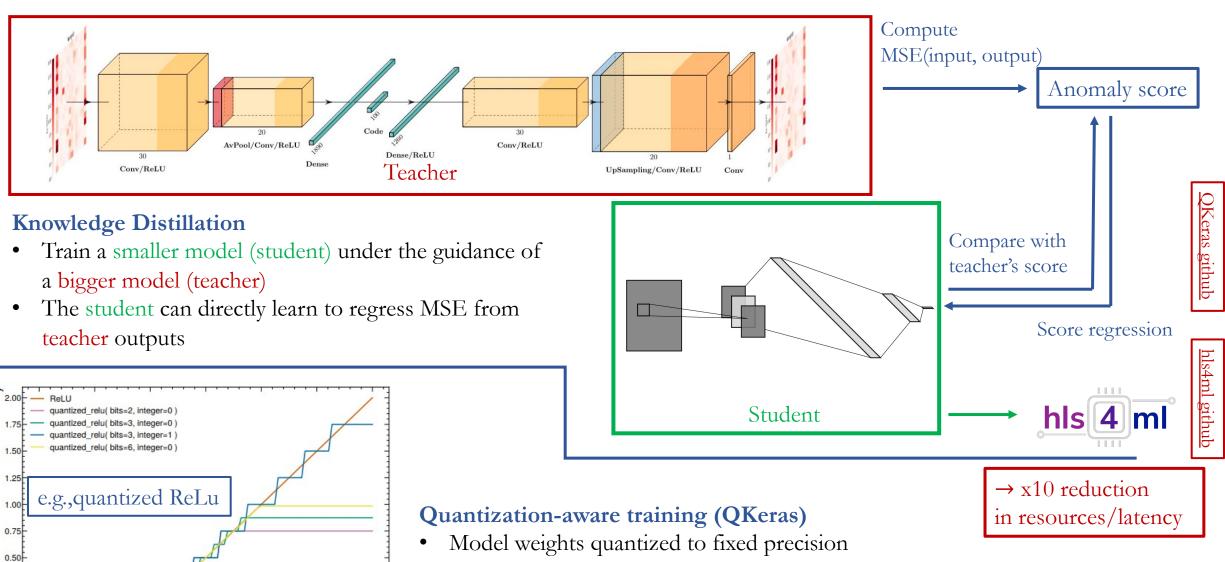
Non-trainable params: 0 Anomaly Detection - CICADA, US LUA, Dec 2023

0.25

0.00

Anomaly Detection - CICADA, US LUA, Dec 2023x

Model compression



> Train a quantized model rather than quantize a trained model

Model: teacher \rightarrow student

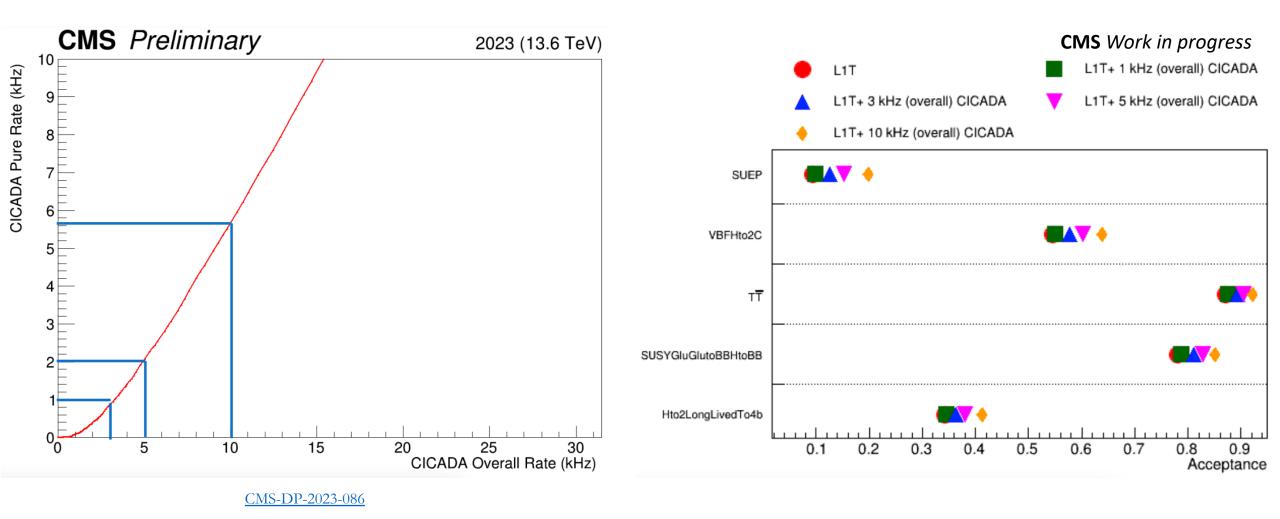
Layer (type)	Output Shape	Param #
input (InputLayer)	[(None, 18, 14, 1)]	
conv2d_1 (Conv2D)	(None, 18, 14, 20)	200
relu_1 (Activation)	(None, 18, 14, 20)	0
<pre>pool_1 (AveragePooling2D)</pre>	(None, 9, 7, 20)	0
conv2d_2 (Conv2D)	(None, 9, 7, 30)	5430
relu_2 (Activation)	(None, 9, 7, 30)	0
flatten (Flatten)	(None, 1890)	0
latent (Dense)	(None, 80)	151280
dense (Dense)	(None, 1890)	153090
reshape2 (Reshape)	(None, 9, 7, 30)	0
relu_3 (Activation)	(None, 9, 7, 30)	0
conv2d_3 (Conv2D)	(None, 9, 7, 30)	8130
relu_4 (Activation)	(None, 9, 7, 30)	0
upsampling (UpSampling2D)	(None, 18, 14, 30)	0
conv2d_4 (Conv2D)	(None, 18, 14, 20)	5420
relu_5 (Activation)	(None, 18, 14, 20)	0
output (Conv2D)	(None, 18, 14, 1)	181

Total params: 323,731				
Trainable params: 323,73	L			
Non-trainable params: 0				

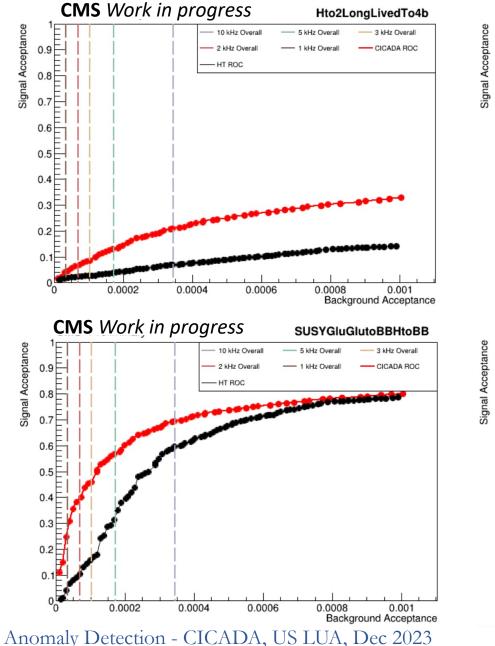
Teacher

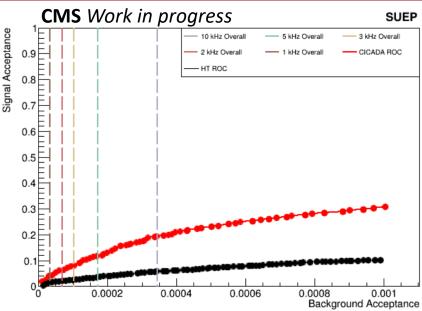
Layer (type)	Output Shape	Param #
In (InputLayer)	[(None, 252)]	0
reshape (Reshape)	(None, 18, 14, 1)	0
conv (QConv2D)	(None, 8, 6, 3)	27
relu1 (QActivation)	(None, 8, 6, 3)	0
flatten (Flatten)	(None, 144)	0
dense1 (QDense)	(None, 20)	2880
relu2 (QActivation)	(None, 20)	0
output (QDense)	(None, 1)	20
Total params: 2,927 Trainable params: 2,927 Non-trainable params: 0	Student	

- 300k parameters go down to 3k parameters, while preserving the performance
- \blacktriangleright Inference latency ~ 100 nanoseconds
- Computational resources fit to a single FPGA board by large margins

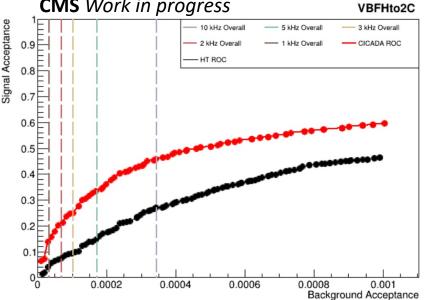


CICADA vs. HT trigger



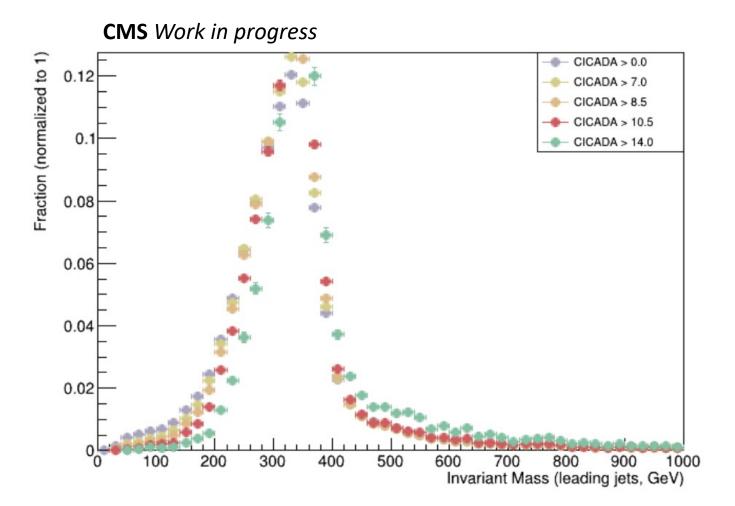


CMS Work in progress



- HT trigger vs CICADA ٠
- **Region of interest** •
 - Bkg rate at $O(10^{-4})$, or
 - Trigger rate at O(1) kHz

Preserving signal shapes

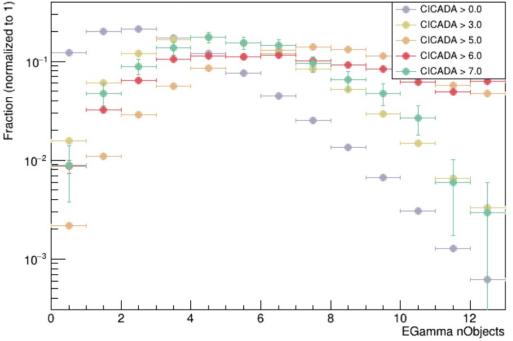


E.g. /SUSYGluGlutoBBHtoBB_NarrowWidth_M-350_TuneCP5_13p6TeV_pythia8/Run3Winter2 3MiniAOD126X_mcRun3_2023_forPU65_v1v2/MINIAODSIM

• Invariant mass of 2 leading jets

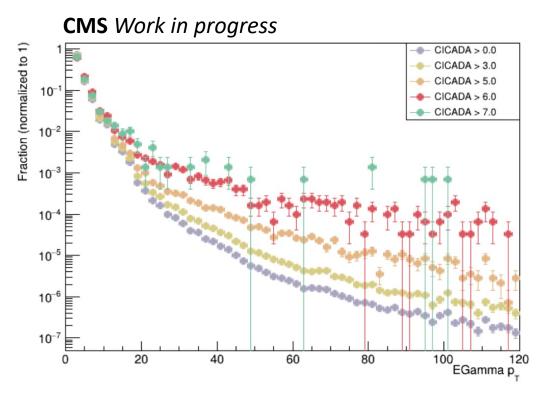
Some trigger objects (EGamma)

nObjects



- CICADA has preference for more EG objects
 - 3 or more

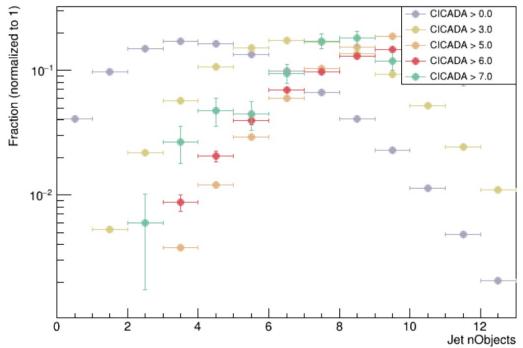
Pt



- Slight preference for higher Pt
 - Still sensitive to the low Pt objects as well

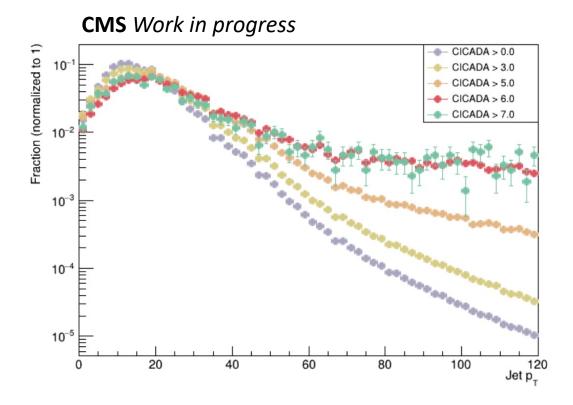
Some trigger objects (Jet)

nObjects



 CICADA's most consistent preference is for high jet multiplicity

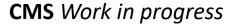
Pt

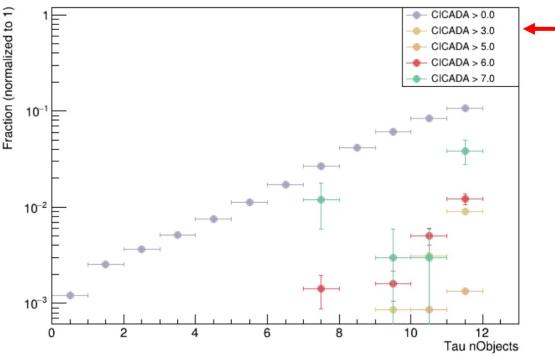


- Slight preference for higher Pt
 - Still sensitive to the low Pt objects as well

Some trigger object (Tau)

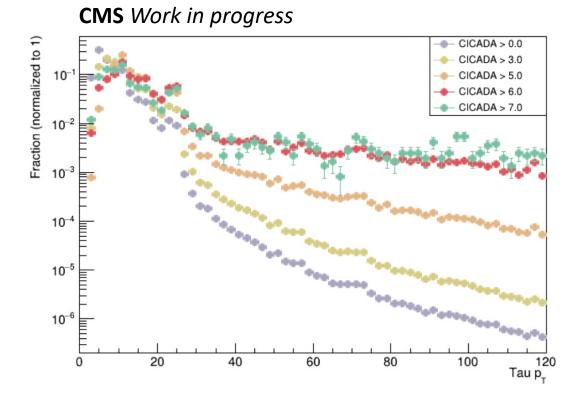
nObjects





- If this looks a bit confusing, it's bad legend placement
- Nearly 97% of high score CICADA events have 12 trigger taus

Pt



- Similar to other objects, there are slight preferences for higher Pt
 - Still sensitive to the low Pt objects as well