

Naomi Gonzalez, Daniel Spitzbart, Indara Suarez

Introduction

- LHC is expected to have an upgrade to the High-Luminosity LHC (HL-LHC) by 2026.
- Higher Collision Rates \rightarrow More Data
 - More Radiation; More Pile-ups
- MIPs Timing Detector
 - ~40ps timing resolution
 - \circ Path reconstruction = hit location + time
 - Barrel Timing Layer ($\eta < 1.6$)
 - Endcap Timing Layer $(1.6 < |\eta| < 3.0)$

Endcap Timing Layer

- Disk design of ETL allows for maximum coverage in the Endcap regions of MTD
 - 32,000 silicon LGAD sensors
 - 32,000 ETROCS bump-bonded to LGAD sensors

BOSTON UNIVERSIT

- 12,480 Service Hybrid Board (SH)
 - Power Board (PB)
 - Readout Board (RB)
 - Module PCB
- Geometrical constraint \rightarrow thickness of detector is 4.5 cm

Naomi Gonzalez, Daniel Spitzbart, Indara Suarez

LGAD

- Low Gain Avalanche diode: Ultra fast silicon detector
- Threshold charge gain of 10-30

E field Traditional Silicon detector

Ultra Fast Silicon Detector E field

ETROC

- Endcap Timing Readout Chip
- Converts charged signal to digital signal
- Stores precision timing data on hit

Readout Board

- Controls uplink and downlink data to and from ETROC and DAQ •
 - Up to 28 ETROCs can be controlled with 1 RB 0
- Monitors temperatures, and voltages of other front-end electronics
 - Calibration of Electronics 0
- Slow + Fast Control

(15, 3)

26

Naomi Gonzalez, Daniel Spitzbart, Indara Suarez

Test Stand

- Test the Integration of front-end electronic detector components (LGAD + ETROC + RB + PB)
- Laser Studies Testing (Fermilab set-up)
 - External Trigger signal (L1A)

Initial Results

- Can successfully read and collect Time of Arrival Data (TOA)
- Use Δ TOA to calculate system timing resolution

$$\boldsymbol{\sigma_i} = \sqrt{0.5 \cdot \left(\sigma_{ij}^2 + \sigma_{ik}^2 - \sigma_{jk}^2\right)}$$

Naomi Gonzalez, Daniel Spitzbart, Indara Suarez

Self-Trigger

- Decodes trigger data stream from ETROC with adjustable bitslip: Send trigger (L1A)
 - Realtime Data Rate Switch (320, 640, 1280 Mbs)

Initial Results

- Successful Firmware Build and initial integration with software
- Tigger rate at about 1Hz
- Initial bitslip working

			187.151 ns
Name	Value	0.000 ns	200.000 ns
🔓 clock_tb	0		
谒 reset_tb	0		
谒 trigger_o_tl	U		
> 😻 uplin3:0]	00ff00ff0(··· X X000000 X	00ff00
> 😻 enab3:0]	ffffffffffff	$\overline{\cdot \cdot }$	ffffffffffff
🔓 rate_i_tb	0		
> 😻 slip_i27:0	0,0,0,0,0,	···X	0,0,0,0,0,0,0,
> 😻 cnts7:0]	0,0,0,0,0,		0,0,0,0,0,0,0,0,0,
堤 clocriod	20000 ps		

32 bits