

Fermilab testbeam data analysis

Calvision meeting Nov 16 2023

Hui-Chi Lin On behalf of the analysis team

Status

- before the analysis.
- extract the characteristics of different kind of signals in each crystal.

• To reduce the impacts of noisy events, a selection of amplitude > 5 times RMS(noise) is applied

• For events passed the above selection, a fit is performed on the time spectrum event-by-event to

Event selection

- Selection: amplitude > 5 times noise
- is likely due to MIPs (plot 2).
- noise for a large portion of events. 23% of events passed the selection for PWO channel 0-3 data.
- which results in a falling spectrum (plot 3).
- Cherenkov contributions after the event selection.

For events passing the selection in channel 4-7 (w/o filter), we see a peak \sim 40-50 ADCs in the amplitude distribution, which

For PWO channel 0-3 (w/ filter), the signals are generally smaller. Therefore, the pulse can't be distinguished from the

• The 23% events are dominated by hadronic shower (10% of incident protons will produce hadronic shower at 0 degree),

• The simulation predicts to see only on average 2 Cherenkov photons with filters applied, so it would be hard to see

Exponential function fit

- Before the peak: $V(t) = |A| \left[\frac{1}{e^{(t-t_0)/\tau L} + 1} 1\right] + d$, where |A| is the amplitude of the peak [Eq3]
- After the peak: $V(t) = -|A|e^{(-t+t0)/\tau R} + d$
- $t_0 / \tau_L / \tau_R$: related to peak position / rising time / decay time
- Comparison of amplitude and integrated ADCs before and after the fit:

Calvision meeting | Nov 16 2023

Compare fit results of PbF2 vs. PWO (0 degree)

Calvision meeting | Nov 16 2023

PWO have much more counts than PbF2 since a large portion of events comes from showering [backup].

:h4	exp	fit	
:h5	exp	fit	
:h6	exp	fit	
:h7	exp	fit	

Understand the distributions from PWO w/ filter

- with lower and higher counts.
- Could apply a cut integrated ADC < 2000 on ch 0-3 to exclude large-signal events.

Average time spectrum for events in different integrated count intervals. Small differences between events

Compare fit results of PbF2 vs. PWO (0 degree)

- τ_L (related to rising time) for PWO w/ filter is closer to PbF2 due to Cherenkov photons only.
- Slightly longer τ_L is seen in PWO w/o filters. ${\color{black}\bullet}$
- responses.

Calvision meeting | Nov 16 2023

 τ_R is more related to SiPM and electronics response. A larger width observed for PWO w/ filter is probably due to limited statistics. The large τ_R observed for PWO w/o filter is due to the decay time of scintillation photons (~30 ns) plus the SiPM and electronics

7

Compare fit results of PbF2 vs. PWO (0 degree)

- Average time spectrum comparison between PbF2 and PWO w/ filter.
- Only compare the shape difference: scale the amplitudes of the two spectrums to be the same.
- The two spectrums are similar to some degree, but the rising and decay time still differ slightly (PbF2 are mainly MIP events while PWO are manly showered events).

Asymmetry between the LHS and RHS channels

• PbF2: asymmetry is around ± 0.2

Calvision meeting | Nov 16 2023

Asymmetry

Asymmetry between the LHS and RHS channels

Calvision meeting | Nov 16 2023

Asymmetry between the LHS and RHS channels

PWO (with filters applied on ch 0-3): asymmetry ranging from -0.9 to -0.8.

Calvision meeting | Nov 16 2023

Conclusion

- data.
- the selection are mainly from showering.
- and τ_R (decay time) have dependence on the integrated ADC.
- PWO with a filter applied, which is similar to some degree.
- w/o filters), and the mean value of asymmetry as a function of angles.

• Reduction of noise by applying the event selection largely help to extract useful information from

However, due to the small signals for PWO data that a filter is applied, the remaning events after

• An exponential function fit is performed on the time spectrums. The fit parameters τ_L (rising time)

• By selecting events with integrated ADC < 2000, we compared the time spectrum of PbF2 and

We checked distributions of the asymmetry of LHS and RHS channels for PbF2 and PWO (w/ and

To-do

- On-going: try a Gamma distribution to do the fitting instead of exponential functions.
- respectively.

Check event-by-event asymmetry [(L-R)/(L+R)] for PWO w/ and w/o filters applied on ch 0-3.

Build a template for Cherenkov and Scintillation spectrum from PbF2 and PWO (w/ filter) data

Back up

June 2023 Test Beam @Fermilab Setup

- 120 GeV protons, ~45k protons evenly distributed in 4 s
- Only one spill per minute, 8 mm horizontally and 4 mm vertically
- Only at most one proton expected in our readout window

0-3 on the S side 4-7 on the E side

Calvision Testbeam Backup

June 2023 Test Beam @Fermilab Datasets

Crystal	Size	Filter (S side only)	Run #	Angle (°)	# of events	Satuarated-event ra (%)
PbF2		No filter	11-29	0 to ±90 (10° interval)	~40k-70k	θ <30°: 2% 30°< θ <60°: 10% 60°< θ : 30%
PWO 6x2	6x2.5x2.5 cm ³	R60	31-66	0 to ±90 (5° interval, except ±85°)	~30k-70k	$ \theta < 30^{\circ}$:2% $30^{\circ} < \theta < 60^{\circ}$:15% $60^{\circ} < \theta$:20% $\theta < -60^{\circ}$:35%
		No filter	103-121	0 to -50 (5° interval), 0 to +25 (5° interval), ±90	~20k-40k	θ <30°: 5% 30°< θ <60°: 15% 60°< θ : 45%
BGO		U330	68-101	0 to -45 (5° interval), 0 to +50 (5° interval), -55, -65, -75, ±90	~50k-60k	θ <30°: 7% 30°< θ <60°: 20% 60°< θ : 40%

Calvision Testbeam Backup

Data pre-processing

- Events with at least one channel readout value saturated are thrown away • Pedestal correction: Average over the ADC counts in the time range (0, $t_{peak} - 20$) ns as the base count. Subtract all points in the event by the base count.
- Time correction.

After time shifting

Waveform for each crystal ($\theta=0^{\circ}$)

• PbF2: no filter for all channels; PWO and BGO: w/ fiter for ch 0-3, w/o filter for ch 4-7

Calvision Testbeam Backup

18

200

200

Average Time Spectrum (θ =0°)

- run.
- PbF2: no filter for all channels; PWO and BGO: w/ fiter for ch 0-3, w/o filter for ch 4-7

Calvision Testbeam Backup

• The spectrums shown are the average over all events (without the saturated ones) in the same

19

Fit setup

- Base count calculation: average over the first 15 ns.
- To reduce fluctuations, smooth the data by averaging two adjoint points.
- Fit range:
 - PbF2: 20-70 ns
 - PWO: 35-65 ns (LHS); 35-85 ns (RHS)
 - BGO: 20-170 ns
- Fit function:
 - Before the peak: $V(t) = |A| \left[\frac{1}{\rho(t-t0)/\tau L+1} 1\right] + d$, where |A| is the amplitude of the peak
 - After the peak: $V(t) = -|A|e^{(-t+t0)/\tau R} + d$

Compare PWO Run31 vs. 103 (0 degree)

• Run31: filter applied on ch 0-3; Run103: without filter

Calvision Testbeam Backup

Compare PWO Run31 vs. 103 (0 degree)

• Run31: filter applied on ch 0-3; Run103: without filter

Calvision Testbeam Backup

* Only select events whose integrated ADC < 2000 in ch 0-3

22

τ_L and τ_R with different ADC cuts in Run103

• Run31: filter applied on ch 0-3; Run103: without filter

[back]

$\tau_L(\tau_R)$ correlation between PWO w/ vs. w/o filter

- Weak $\tau_L(\tau_R)$ correlation between channels w/ and w/o filter.
- Anti-correlation between τ_L and τ_R in the same channel.

 τ_L (τ_R) correlation between channels w/ and w/o filter:

* Only select events whose integrated ADC < 2000 in ch 0-3

ADC to p.e. conversion

- Evaluated from the LED data with #photon=5.
- Further convert voltage to ADC by 1V=4096 ADC.
- 1 p.e. = 2.9 ADC for pulse height; 1 p.e. = 67.5 ADC for integrated counts

Calvision Testbeam Backup

• For both pulse height and voltage integration, scale the x variable of the poisson distribution with mu=5 (orange) to match the distributions (blue). The scaling of x is the voltage to ADC conversion.

