KIDs for Millimeter Cosmology

Adam Anderson Fermilab Cosmic Day 30 October 2023

Key Question is there anything new left to do in ground-based CMB / millimeter-wavelength surveys?

If CMB-S4 construction and operations last through ~2040,

Key Question

If CMB-S4 construction and operations last through ~2040, is there anything new left to do in ground-based CMB / millimeter-wavelength surveys?

YES! Newer detector technologies (e.g. kinetic inductance detectors) can provide higher-density focal planes. Much more optimal for:

Millimeter-wavelength intensity mapping

• High-frequency CMB observations

Key Question

If CMB-S4 construction and operations last through ~2040, is there anything new left to do in ground-based CMB / millimeter-wavelength surveys?

YES! Newer detector technologies (e.g. kinetic inductance detectors) can provide higher-density focal planes. Much more optimal for:

 Millimeter-wavelength intensity mapping -> SPT-SLIM High-frequency CMB observations -> SPT-3G+

- Cooper pairs in AC potential have nonzero \bullet inertia, results in phase shift between I and V. Looks like an inductance: "kinetic inductance".
- Breaking of Cooper pairs by e.g. photons, lacksquarechanges kinetic inductance.
- Create a sensor by coupling the superconductor in an LC circuit so that inductance can be sensed as a change in resonant frequency.

SPT-SLIM: Line Intensity Mapping

- Large redshift range z > 3 that is relatively unexplored: provides information on expansion history of universe, reionization, star-formation, ++
- LIM is efficient: we measure all sources and do not need to threshold on galaxies Multiple lines available across radio, millimeter, IR

Top view

SPT-SLIM Experimental Concept

South Pole Telescope is 10-m CMB telescope observing at 90/150/220 GHz during both austral winter *and summer*

SPT optics include mount point for optional receiver, used by Event Horizon Telescope (EHT) during 2017-present

SPT-SLIM - Replace EHT cryostat with on-chip spectrometers and observe for one summer season

Figure: J. Kim, et al. 1805.09346

SPT-SLIM: South Pole Telescope Summertime Line Intensity Mapper

Argonne:

T. Cecil C. Chang Z. Pan

Cardiff: P. Barry G. Robson

Harvard: G. Keating

Fermilab:

- A. Anderson
- B. Benson
- S. Simon
- M. Young

McGill:

M. Adamic M. Dobbs M. Rouble

HARVARD & SMITHSONIAN

SLAC

- K. Karkare
- A. Saleem
- C. Zhang

U. Arizona: D. Kim

D. Marrone

U. Chicago:

- K. Dibert
- K. Fichman
- T. Natoli
- J. Zebrowski

Three-Speed Logic G. Smecher

SPT-3G+: High-frequency CMB

Reionization, Recombination, and the CMB Reionization Recombination

edshift ge	~1100 ~0.4 Myr	~30 ~100 Myr	~15 ~300 Myr
	Cosmic	First	First
	Microwave Background	Stars	Galaxies

Neutral Hydrogen & Helium -Rayleigh Scattering x

Rayleigh scattering:

CMB photons scatter on neutral H and He at a redshift after recombination, imprinting additional cosmological information in the CMB anisotropy.

~1 Gyr End of First Reionization Clusters

~4

~6

~2.5 ~1.6 Gyr First Proto-

lonized Bubbles -**Kinematic** Sunyaev **Zel'dovich**

Patchy kSZ effect:

CMB photons scatter on expanding bubbles of ionized gas, imprinting ionization history in anisotropy.

Secondary CMB anisotropies and sources targeted by upcoming CMB experiments (Simons Observatory, CCAT-prime, CMB-S4, ...)

Mapping Speed of Arrays

- Mapping speed *per pixel* optimized for pixel sizes > $2F\lambda$
- But smaller pixels enable more uncorrelated detectors per array, so mapping speed *per* array tends to be maximized for small pixels down to $0.5-1F\lambda$
- Improvement of KIDs vs. TESs due to detector density is greatest at frequencies >150GHz
- **Example:**
 - CMB-S4 220/270 GHz dichroic band is limited to ~2000 detectors / wafer
 - >3x increase in sensitivity possible by moving to denser arrays with smaller pixels

SPT-3G+ Detector Architecture

Bandpasses

220 GHz 280 GHz 345 GHz

SPT-3G+ Detector Prototyping and Testing High efficiency agrees Dominated by photon at with simulations typical optical powers W023: $\eta = 0.67$ W029: η = 0.71 photon NEP recombination NEP 10^{-16} thermal NEP NEP [W/VHz] Range of expected optical power 10^{-17} 10^{0} 10^{1} Loading (pW)

220 GHz detector test wafer fabricated at Argonne (Karia Dibert, Tom Cecil)

SPT-3G+ Survey Concept SPT-3G+ Main / SPT-3G SPT-3G+ Galactic SPT-3G extended 3G **3G+**

	Survey Depth [µK-arcmin]				
Band	Main (1500 deg ²)	Extended (3000 deg ²)	Galactic (7000 deg ²)	Resolu [arcm	
95 GHz	3.0	9		1.5	
150 GHz	2.2	9		1.2	
220 GHz	8.8	13		1.0	
220 GHz	2.9		14	0.8	
285 GHz	5.6		28	0.6	
345 GHz	28		170	0.5	

 Reuse the existing SPT primary and secondary optics, with a new cryostat containing KID-based CMB detectors at 220, 285, and 345 GHz.

• Continue to observe existing SPT "Main" field, but add 7000 deg² "Galactic" survey during the austral summer months

Conclusions

- up new science opportunities beyond CMB-S4.
- Fermilab, together with Chicago and Argonne, is leading the development of two new cameras based on high-density KIDs:
 - SPT-SLIM Pathfinder for mm-wavelength line intensity mapping
 - SPT-3G+ High-frequency CMB
- SPT-SLIM deploys next year!

• Pushing the *density frontier* of mm-wavelength detectors using KIDs opens