SQMS and Dark Sector Searches

Roni Harnik, **Quantum Theory Department** SQMS

Quantum Theory

- Quantum Theory works ion two areas:
 - Quantum Simulation (a new and exciting field!)
 - Quantum Sensing (more related to this crowd):
 - Asher Berlin, RH

"Light shining thru thin wall", Berlin, Janish, RH

SQMS - Superconducting Quantum Materials and Systems:

- SQMS is one of 5 NQI centers. Headed by Fermilab.
- QSC is another of these 5 (headed by ORNL). See Daniel's talk.

"DOE NQISR Centers leverage unique capabilities, expertise and facilities to achieve bold scientific and technological goals in quantum."

A DOE National QIS Research Center

SQMS MISSION Achieve transformational advances in the major cross-cutting challenge of understanding & eliminating decoherence mechanisms in superconducting devices, [excerpt] enabling construction and deployment of superior quantum systems for computing & sensing.

Fermilab Northwestern University 30 COLORADOSCHOOLOFMINES. **Partner Institutions** JOHNS HOPKINS LOCKHEED MARTIN 450+ Stanford RUTGERS Collaborators UNIVERSITY OF UNIVERSITY OF MINNESOTA ILLINOIS

+ LLNL about to join (including ADMX folks)

SQMS Technology Thrust - Strategy

Basic Understanding \rightarrow Coherence Improvement \rightarrow 2D and 3D High Coherence QPUs

Build upon core strengths that were developed for accelerators:

- Fermilab world's best superconducting RF cavities (3D) - seconds of coherence (quality factors $Q > 10^{10}$)
 - Associated deep structural and superconductivity knowledge of Nb (key part of 2D qubits) Microwave, cryogenic, mechanical engineering and large scale integration experience
- Deep 2D superconducting qubit and quantum processor expertise
- Deep basic materials and superconductivity expertise

SQMS National Nanofabrication Taskforce Pushing the Forefront of Qubit Coherence

Top published transmon qubit coherence times

Group	Best T ₁ (µs)	Freq. (GHz)	Substrate	Primary Material	Publication Year
Yu	503	3.8-4.7	Sapphire	Ta, dry etch	2022
SQMS	451	4.5-5	Silicon	Ta/Nb, dry etch	2023
Houck	360	3.1-5.5	Sapphire	Ta, wet etch	2021
IBM	340	~4	Silicon	Nb, dry etch	2022
IBM	234	3.808	Silicon	Al, dry etch	2021
SQMS	198	4.5-5	Sapphire	Ta/Nb, dry etch	2023

arXiv:2304.13257v2

SQMS Physics and Sensing

- for technology
- Probing Dark sectors:
- New light particles: Dark photons and axions.
- Either as the dark matter, or as "just" new particle.
- A multi-search goal. Our most engaging science goal.
- Precision tests:

 - Tests of the standard model (electron g-2, Euler-Heisenberg) Tests of quantum mechanics
 - **Gravitational waves:**
 - Expanding the frequency for GW detection beyond LIGO/VIRGO.

The SQMS sensing effort is both leveraging and providing ambitious goals

Wave-like DM Detection

- Several open challenges in Axion and Dark photon DM searches.
- Accelerating the Search in the 1 to tens of GHz:
- Increase quality factor
- Going beyond SQL (e.g. photon counting, see Aaron's talk)
- Expanding the axion/dark photon search window to high and low masses (also non DM searches).

Deepest sensitivity: Ultrahigh Q for Dark photon DM

DPDM search with 1.3 GHz cavity with $Q_L \approx 10^{10}$. **Deepest exclusion to wavelike DPDM** by an order of magnitude. **Next steps:**

- Tunable DPDM search from 4-7 GHz. ("low hanging fruit") Implement photon counting to subvert SQL noise limit.

- Cervantes et al., arxiv:2208.03183, in review in Phys. Rev. Lett.

Contacts: Raphael Cervantes

Dark Sector: High Q in Multi-Tesla Fields

- Axion haloscope: search for dark matter with high Q cavity in multi-tesla magnetic fields
- Two SQMS designs substantially outperform state of the art copper cavities (and these ideas can be combined!)
- Now partnering with ADMX team for first demonstration of a hybrid superconductingnormal-conducting cavity in a real axion search.

Contact: Sam Posen

Superconducting Nb₃Sn cavity (FNAL): Posen et al., arxiv:22014.10733, in review in Phys Rev Applied

Hybrid copper-dielectric cavity (INFN): Di Vora et al., PhysRevApplied.17.054013

SUPERCONDUCTING QUANTUM MATERIALS & SYSTEMS CENTER

New approach to QC: Qudit Access and control higher quantum levels

4-levels: Ququart 2 qubits 8-levels: Quoct 3 qubits

 $\epsilon \sigma_+ \sigma_-$

First Milestone: Photon Counting

Incorporate Transmon into a **TESLA** cavity

Contacts: Alex Romanenko, Tanay Roy.

Tanay Roy - Fermilab

Second Milestone: Fock states

Prepare quantum states

Δe

Contacts: Alex Romanenko, Tanay Roy.

SUPERCONDUCTING QUANTUM MATERIALS & SYSTEMS CENTER

Multimode searches

Bogorad, et al., PRL, DOI:10.1103/PhysRevLett.123.021801 Berlin, et al., JHEP, DOI:10.1007/JHEP07 (2020) 088 Gao & Harnik, JHEP, DOI:10.1007/JHEP07 (2021) 053 Berlin, et al., arXiv:2203.12714, Snowmass WP (2022) Sauls, PTEP, DOI:10.1093/ptep/ptac034 (2022) Giaccone, et al., arXiv:2207.11346 (2022)

Axion DM search based on the heterodyne detection scheme: cavity design is finalized, contract for cavity fabrication placed (cavity arrival: Fall 2023)

In preparation for search:

- Working on RF experimental set up and read out system
- Addressing experimental challenges such as passive dampening of vibrations in LHe facility
- Multimode feasibility study

Contacts: Asher Berlin, Bianca Giacone

Multimode searches

frequency = $m_a/2\pi$

Berlin, et al., JHEP, DOI:10.1007/JHEP07 (2020) 088 Berlin, et al., arXiv:2203.12714, Snowmass WP (2022) Giaccone, et al., arXiv:2207.11346 (2022)

Contacts: Asher Berlin, Bianca Giacone

Dark SRF: cavity-based search for the Dark Photon A light-shining-through-wall experiment.

Phase 1: Pathfinder run in LHe. Demonstrated enormous potential for SRF based searches.

Phase 2: in DR, receiver at ~mk, in quantum regime. Improved frequency stability. Phase sensitive readout.

Will increase the search reach.

Contacts: Alex Melnichuk, RH

SUPERCONDUCTING QUANTUM

Single Particle Qubit

The most precise theory-experiment comparison in physics:

Electron magnetic moment (g-2)_e: The quantum state of a single electron in a trap is monitored via a QND measurement.

SQMS joined the effort, contributed to understanding loss sources.

 $-\frac{\mu}{\mu_B} = \frac{g}{2} = 1.001\,159\,652\,180\,59\,(13) \quad [0.13 \text{ ppt}]$ Phys. Rev. Lett. 130, 071801 (2023) **Editors choice!**

- SQMS bonus: We also found that a singleelectron qubit is a sensitive DM search in a challenging frequency range! Theory + proof-of-concept!
- *Phys.Rev.Lett.* 129 (2022) 26, 261801 (a new NU-Stanford-Fermilab collaboration)

Contacts: RH

SUPERCONDUCTING QUANTUM MATERIALS & SYSTEMS CENTER

MAG02.0: Gravitational waves

- SQMS theorists have laid the formalism for GR-EM cavity interaction.
- Two types of signals: EM and mechanical.
- Current axion experiments have sensitivity to GHz Gravity waves [1].
- A dedicated cavity experiment, e.g. MAGO, has significant reach at MHz [2].
- A new collaboration with INFN and DESY to revive MAGO is being formed.

Dark Matter - Quantum Sensor Network

- A network of cavities can be used to enhance the sensitivity to dark matter. • How should we distribute quantum resources in the network?
- A distributed quantum sensing protocol for DM searches allows for enhanced scan rate for DM.

Quantum Garage

Five new DRs. Ribbon cutting next week.

DR 8, with a 9T magnet, has arrived and will be installed soon.

Large Cryogenics Facility: Colossus

Capitalizing on millions of dollars in previous investments in cryogenic infrastructure, we have developed the design of a record size dilution fridge, capable of hosting our SQMS 2D and 3D platforms, and quantum sensors

A Home for SuperRAD? GW experiment?

(A quantum data center?)

SQMS Physics and

- Lots going on!
- Proof-of-concept Axion an searches DM in several fre
- Dark SRF pathfinder is setting new limits.
- GW searches being developed
- Tests of QM
- For more details, ask these folks:

Sam Posen

22

Alex Melnichuk

Raphael Cervantes

Asher Berlin

We are Happy to Collaborate!!

4.3075 4.3080 4.3085 4.3090 4.3095 Qubit Frequency (GHz)

Bianca Giaccone

Alex Romanenko

Anna Grasselino

or me.

Light Shining Through Wall (w/ RF cavities) Consider two cavities with with exactly same frequency

High $Q \rightarrow we$ can store more photons. Coherent field.

 $P_{\rm rec} \sim G^2 \epsilon^4 \left(\frac{m_{\gamma'}}{\omega}\right)^4 Q_{\rm rec} Q_{\rm em} P_{\rm em}$

* Coming clean: scaling with mass depends on the polarization.

High $Q \rightarrow$ cavity can ring up for a longer time

Single Particle Qubit

- At Northwestern, the quantum state of a single electron in a Penning trap is monitored with a QND measurement.
- □ The most precise test of the SM of particle physics!!!

$$-\frac{\mu}{\mu_B} = \frac{g}{2} = 1.001\,159\,652\,180\,59\,(13) \quad [0]$$

- This is a quantum-number counting experiment.
- Also sensitive to Dark Photon DM at 150 GHz!

Phys.Rev.Lett. 129 (2022) 26, 261801

0.13 pptPhys. Rev. Lett. 130, 071801 (2023)

Dark Photon

Many constraints on the dark photon! (a review: Essignet al 1311.0029)

10

Axions and ALPs

New challenges:

superconducting quantum devices that can operate in (or near) high magnetic fields!

Dark Sector: High Q in Multi-Tesla Fields

Axion haloscope: search for dark matter with high Q cavity in multi-tesla magnetic fields

Two SQMS designs substantially outperform state of the art copper cavities (and these ideas can be combined!)

Other Challenges: counting photons near a magnetic field. Cavity and qubit frequency tuning. etc.

Superconducting Nb₃Sn cavity (FNAL): Posen et al., arxiv:22014.10733, in review in Phys Rev Applied

Hybrid copper-dielectric cavity (INFN): Di Vora et al., PhysRevApplied.17.054013

Axions and ALPs

Quantum sensing already playing a role for Axion DM: e.g. **HAYSTAC** used squeezed states for factor of 2 in scan speed.

Backes, K.M., Palken, D.A., Kenany, S.A. *et al.* A quantum enhanced search for dark matter axions. *Nature* **590**, 238–242 (2021)

In Conclusion

We are curious about the Universe?

- · What new particles exist?
- What is dark matter?
- · What can we learn from gravitational waves?

These ambitious questions require the most sensitive detectors in existence.

We can let standard quantum limits get in our way! We need QIS!

Deleted scenes

Atom Interferometers

Superposition allowed for more cool stuff.

 $|\psi_1\rangle + e^{i\Delta Et/\hbar}$ $|\psi_2|$

MAGIS 100, under construction, will look for gravity waves! (The distance between clocks oscillating...)

DE.g. atomic clocks: am atom in a superposition of quantum states can keep time!

Gravitational waves

SQMS theorists have laid the formalism for GR-EM cavity interaction.

Two types of signals: EM and mechanical.

- Current axion experiments have sensitivity to GHz Gravity waves [1].
- A dedicated cavity experiment, e.g. MAGO, has significant reach at MHz [2].

A new collaboration with INFN and DESY to revive MAGO is being formed.

MAGO (INFN)

[2] Berlin et al, in preparation.

SUPERCONDUCTING QUANTUM MATERIALS & SYSTEMS CENTER

Single Particle Qubit

The most precise theory-experiment comparison in physics:

Electron magnetic moment (g-2)e:The quantum state of a single electron in aThe quantum state of a single electron in atrap is monitored via a QND measurement.Phys. Rev. Lett. 130, 071801 (2023)Editors choice!

SQMS joined the effort, contributed to understanding loss sources.

SQMS bonus: We also found that a singleelectron qubit is a sensitive DM search in a challenging frequency range!

Theory + proof-of-concept!

Phys.Rev.Lett. **129 (2022) 26, 261801** (a new NU-Stanford-Fermilab collaboration)

SUPERCONDUCTING QUANTU MATERIALS & SYSTEMS CENT

Quantum Simulation

We would like to simulate particle physics processes.

Perturbation theory does not always work!

Feynman: "Nature isn't classical, dammit! and if you want to make a simulation of problem, because it doesn't look so easy.

Nucleus

nature, you'd better make it quantum mechanical, and by golly it's a wonderful

Quantum Simulation

But why should we make it quantum mechanical?

 $\psi(t) =$

Rapid oscillation!

- Here is a reason: Simulating a quantum system evolving in time is numerically hard!
 - A "sign problem"

$$e^{iEt/\hbar}\psi(0)$$

A quantum system will keep track of this inherently

Quantum Simulation

- □ What would we simulate?
- □ For example, some day, Hadronization Neutrino interacting with a nucleus.
- Processes in the early Universe

The Muon □ Yes, that muon! Recall the mid-30's: The SM of the time is

The muon: who ordered that !?

1:23 AM - 20 Jun 1937 · Embed this Tweet

So you don't always get what you ordered . . .

Rates:
$$\Gamma_{\rm SPDC} \sim \frac{P_p \chi_{\rm eff}^{(2)^2} \omega_s \omega_i L}{\pi n_p n_s n_i A_{\rm eff}}$$
Motivates long crystals too. $\Gamma_{\rm dSPDC}^{(A'_L)} \sim \epsilon^2 \frac{m_{A'}^2}{\omega_{A'}^2} \frac{P_p \chi_{A'_L}^{(2)^2} \omega_s \omega_{A'} L}{n_p n_s A_{\rm eff}}$ $\Gamma_{\rm dSPDC}^{(\rm axion)} \sim \frac{P_p g_{a\gamma\gamma}^2 \omega_s L}{\omega_{axion} n_p n_s A_{\rm eff}}$ $N_{\rm events}^{(A'_L)} \sim 10^{21} \left(\epsilon^2 \frac{m_{A'}^2}{\omega_{A'}^2}\right) \left(\frac{P_p}{\rm Watt}\right) \left(\frac{L}{\rm m}\right) \left(\frac{t_{\rm int}}{\rm year}\right)$ $N_{\rm events}^{(\rm axion)} \sim 40 \left(\frac{g_{a\gamma}}{10^{-6} \text{ GeV}^{-1}}\right)^2 \left(\frac{P_p}{\rm Watt}\right) \left(\frac{L}{\rm m}\right)$ $\overline{\frac{Dark Photon (m_{A'} = 0.1 \text{ eV})}{Example dSPDC setup}}$ $\overline{P_p = 1 \text{ W}}$ $P_p = 1 \text{ W}$ $P_p = 10/day$ $\Gamma = 10/day$ $\Gamma = 10/day$ $\Gamma = 10/day$ $\Gamma = 10/day$ $P_p = 100 \text{ W}$

	Dark Photon $(m_{A'} = 0.1)$
Current lab limit	$\epsilon < 3 \times 10^{-7}$
Example dSPDC setup	$P_p = 1 $ W
	L = 1 cm
	$\Gamma = 10/\text{day}$
Current Solar limit	$\epsilon < 10^{-10}$
Example dSPDC setup	$P_p = 1 \text{ W}$
	L = 10 m
	$\Gamma = 10/\text{year}$

