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Quantum Theory

o Quantum Theory works ion two areas:

o Quantum Simulation (a new and exciting field!)

0 Quantum Sensing (more related to this crowd):

o Asher Berlin, RH
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“Light shining thru thin wall”,
Berlin, Janish, RH

o Sohitri Gosh, Alex Millar, Tanner Trickle, Christina Gao (JRA), Ryan Janish

Excited to collaborate!
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SQMS - Superconducting Quantum Materials and Systems:

o SQMS is one of 5 NQI centers. Headed by Fermilab.
o QSC is another of these 5 (headed by ORNL). See Daniel’s talk.
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~SQMS--

A DOE National QIS Research Center

SQMS MISSION Achieve transformational advances in the major cross-cutting challenge of
[excerpt] understanding & eliminating decoherence mechanisms in superconducting devices,
enabling construction and deployment of superior quantum systems for computing & sensing.
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SQMS Technology Thrust - Strategy

Basic Understanding = Coherence Improvement — 2D and 3D High Coherence QPUs

Build upon core strengths that were developed for accelerators:

= Fermilab world’s best superconducting RF cavities (3D)
— seconds of coherence (quality factors Q > 1019)

= Associated deep structural and superconductivity knowledge of Nb (key part of 2D qubits)
= Microwave, cryogenic, mechanical engineering and large scale integration experience

= Deep 2D superconducting qubit and quantum processor expertise

» Deep basic materials and superconductivity expertise
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SQMS National Nanofabrication Taskforce
Pushing the Forefront of Qubit Coherence

Top published transmon qubit coherence times
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SQMS Physics and Sensing

= The SQMS sensing effort is both leveraging and providing ambitious goals
for technology

= Probing Dark sectors:

= New light particles: Dark photons and axions.

» Either as the dark matter, or as “just” new particle.

= A multi-search goal. Our most engaging science goal.

= Precision tests:

= Tests of the standard model (electron g-2, Euler-Heisenberg)

» Tests of quantum mechanics

= Gravitational waves:

» Expanding the frequency for GW detection beyond LIGO/VIRGO.
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Wave-like DM Detection

= Several open challenges in Axion and Dark photon DM searches.

= Accelerating the Search in the 1 to tens of GHz:

= [ncrease quality factor

= Going beyond SQL (e.g. photon counting, see Aaron’s talk)

= Expanding the axion/dark photon search window to high and low masses (also

non DM searches).
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Deepest sensitivity: Ultrahigh Q for Dark photon DM

B LY |
i 10710 |
210" B g
E 10712 o
210713 0
.GE) 10714 >
" 108 1.5GH SQMS 4-7' GH
10 1.3GHz Cavit MS 4-7'GHz
16 o y Cavity Projection
107 , , , I

I I I I T
2x10° 10  Dark photon mass [eV]
Cervantes et al., arxiv:2208.03183, in review in Phys. Rev. Lett.

DPDM search with 1.3 GHz cavity with ¢, ~ .
Deepest exclusion to wavelike DPDM by an order of magnitude.

Next steps:
« Tunable DPDM search from 4-7 GHz. (“low hanging fruit”)
» Implement photon counting to subvert SQL noise limit.
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Dark Sector: High Q in Multi-Tesla Fields

= Axion haloscope: search for dark matter with
high Q cavity in multi-tesla magnetic fields

= Two SQMS designs substantially outperform
state of the art copper cavities (and these ideas
can be combined!)

= Now partnering with ADMX team for first
demonstration of a hybrid superconducting-
normal-conducting cavity in a real axion search.

10 Contact: Sam Posen
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Superconducting NbsSn cavity (FNAL): Posen et al.,
arxiv:22014.10733, in review in Phys Rev Applied
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Hybrid copper-dielectric cavity (INFN): Di Vora et al.,
PhysRevApplied.17.054013
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New approach to QC: Qudit

Access and control higher quantum levels

4-levels: Ququart

8-levels: Quoct

2 qubits

3 qubits

Many levels
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Flrst Mllestone Photon Counting

TE3RIO003 photon splitting
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( Prepare quantum states \

Relaxation n = 1
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Second Milestone: Fock states
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Contacts: Alex Romanenko, Tanay Roy.

Wigher tomography
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Bogorad, et al., PRL, DOI:10.1103/PhysRevLett.123.021801
Berlin, et al., JHEP, DOI:10.1007/JHEPO7 (2020) 088

Gao & Harnik, JHEP, DOI:10.1007/JHEPO7 (2021) 053
Berlin, et al., arXiv:2203.12714, Snowmass WP (2022)
Sauls, PTEP, DOI:10.1093/ptep/ptac034 (2022)

Giaccone, et al., arXiv:2207.11346 (2022)

= Axion DM search based on the heterodyne

detection scheme: cavity design is finalized,

contract for cavity fabrication placed (cavity
arrival: Fall 2023)

In preparation for search:

= Working on RF experimental set up and

Contacts: Asher Berlin, Bianca Giacone

read out system

Addressing experimental challenges such
as passive dampening of vibrations in LHe
facility

Multimode feasibility study
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Berlin, et al., JHEP, DOI:10.1007/JHEPO7 (2020) 088
Berlin, et al., arXiv:2203.12714, Snowmass WP (2022)
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Contacts: Asher Berlin, Bianca Giacone

M u Iti mOd e sea rChes Giaccone, et al., arXiv:2207.11346 (2022)
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Dark SRF: cavity-based search for the Dark Photon

A light-shining-through-wall experiment.

Phase 1: Pathfinder run in LHe. Phase 2: in DR,
Demonstrated enormous potential receiver at ~mk,
for SRF based searches. in quantum

o o g regime. Improved

frequency
stability. Phase
sensitive readout.

1077

Will increase the
search reach.

= Dark SRF

B Pathfinder Run

10—9 IIIII| | | |I|II|| | | |||II||
1077 1076 107°

1078

Contacts: Alex Melnichuk, RH

my (eV)
Romanenko et al., arXiv:2301.11512 (2023), in review in PRL. MSQM S"A’":nl:;::ﬁxﬁ.ziung?:M%U:ENNTTUEﬁ



Electron magnetic moment (g-2)e: b g
The quantum state of a single electron in a 2
trap is monitored via a QND measurement.

Single Particle Qubit

= The most precise theory-experiment comparison in physics:

microwave inlet
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Phys. Rev. Lett. 130, 071801 (2023)
Editors choice!

» SQMS joined the effort, contributed to understanding loss sources.
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= SQMS bonus: We also found that a single-
electron qubit is a sensitive DM search in a
challenging frequency range!

= Theory + proof-of-concept!

Contacts: RH

Phys.Rev.Lett. 129 (2022) 26, 261801
(a new NU-Stanford-Fermilab collaboration) ""”S @ M S ]
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https://link.aps.org/doi/10.1103/PhysRevLett.130.071801

Contacts: Asher Berlon, Bianca Giacone, RH

MAGO02.0: Gravitational waves

= SQMS theorists have laid the formalism
for GR-EM cavity interaction.

= Two types of signals: EM and mechanical.

= Current axion experiments have sensitivity
to GHz Gravity waves [1].

= A dedicated cavity experiment, e.g. MAGO,
has significant reach at MHz [2]. o
= A new collaboration with INFN and DESY v~ |

I " " 10-22 - B |
to revive MAGO is being formed. 1 ¢ e () H
10724 - - Superyag: BAW
= N dlanCe
1026 __J\__J_’_A,/\-
—-{ LIGO-Virgo
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[1] Phys.Rev.D 105 (2022) 11, 116011
[2] Berlin et al, in preparation. ; ﬂ’"S a M S /s SUPERCONDUCTING QUANTUM
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Contacts: RH

Dark Matter - Quantum Sensor Network

= A network of cavities can be used to enhance the sensitivity to dark matter.
= How should we distribute quantum resources in the network?

= A distributed quantum sensing protocol for DM searches allows for enhanced
scan rate for DM.

ADT

A new collaboration of HEP and QIS experts from across SQMS:

1]
2]
193

PRX Quantum 3 (2022) 3, 030333
2210.07291 [quant-ph]

2210.16180 [quant-ph] (in review by Nature Photonics)

SUPERCONDUCTING QUANTUM
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https://arxiv.org/abs/2210.07291
https://arxiv.org/abs/2210.16180

Quantum Garage

Five new DR

s. Ribbon cutting next week.

-
-

DR 8, with a 9T magnet, has arrived and will be installed soon.



Large Cryogenics Facility: Colossus

W A
i\‘;la g!l‘f :=
A Home for SuperRAD?
e 5 GW experiment?
f= AN — . (A quantum data center?)
VI S

Capitalizing on millions of dollars in previous investments in cryogenic infrastructure, we have developed the design
of a record size dilution fridge, capable of hosting our SQMS 2D and 3D platforms, and quantum sensors

21 10/29/2023 i MS ° M S - /ins. SUPERCONDUCTING QUANTUM
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frequency = mg /21

kHz MHz GHz

1079
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SQMS Physics and Sensing
= Lots going on! %
» Proof-of-concept Axion and Dark Photons . R

searches DM in several frequency ranges. s

TE3RIO03 photon splitting

» Dark SRF pathfinder is setting new limits. h
» GW searches being developed

» Tests of QM
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Light Shining Through Wall (w/ RF cavities)

O Counsider fwo cavities with with exactly same frequency

N\
High Q — we can store more High @ = cavity can ring
photouns. Coherent field. up for a longer time

o\ 4
Prec ™ G2 64 (m’y ) QrechmPem
W

* Coming clean: scaling with mass depends on the polarization.



Single Particle Qubit

O At Northwestern, the quantum state of a single electron th a
Penning trap 1s monitored with a QND measurement,

O The most precise test of the SM of particle physics!!!
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Dark Photon

O Many constratnts on the dark photon!
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Axions and ALPs
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Dark Sector: High Q in Multi-Tesla Fields

Axion haloscope: search for dark matter with
high Q cavity in multi-tesla magnetic fields

Two SQMS designs substantially outperform
state of the art copper cavities (and these ideas
can be combined!)

Other Challenges: counting photons near
a magnetic field. Cavity and qubit
frequency tuning. etc.
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Superconducting Nb,;Sn cavity (FNAL): Posen et al.,
arxiv:22014.10733, in review in Phys Rev Applied
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Hybrid copper-dielectric cavity (INFN): Di Vora et al.,
PhysRevApplied.17.054013
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Axions and ALPs
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Quantum sensing already playing a role for Axion DM:
e.g. HAYSTAC used squeezed states for factor of 2 in scan speed.

Backes, K.M., Palken, D.A., Kenany, S.A. et al.
A quantum enhanced search for dark matter axions. Nature 590, 238-242 (2021)



In Conclusion

O] W-e are curious about the Umiverse?
+ What new particles exist?

o What s dark matter?

o+ What can we learn from gravitational waves?

O These ambitious questions require the most sensifive detfectors in existence.

0 We can (et standard quantum (imits get tn our way! We need QIS!




Deleted scenes




Atom Interferometers

O Superposition allowed for more cool stuff.

O E.g9. atomic clocks: am atom tn a superposition of quantfum states can keep fime!

(a)

¢1> 4 eiAEt/h ¢2>

Time

MAGIS 100, under construction, will look for gravity waves!

(The distance between clocks oscillating...)
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Gravitational waves

SQMS theorists have laid the formalism
for GR-EM cavity interaction.

Two types of signals: EM and mechanical.
Current axion experiments have sensitivity

to GHz Gravity waves [1].

A dedicated cavity experiment, e.g. MAGO, | .-

has significant reach at MHz [2].

A new collaboration with INFN and DESY

to revive MAGO is being formed.

MAGO (INFN)
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[1] Phys.Rev.D 105 (2022) 11, 116011
[2] Berlin et al, in preparation.
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Single Particle Qubit

The most precise theory-experiment comparison in physics:

rings

quartz
spacer

Electron magnetic moment (g-2)e:

The quantum state of a single electron in a
trap is monitored via a QND measurement.
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Phys. Rev. Lett. 130, 071801 (2023)

Editors choice!

SQMS joined the effort, contributed to understanding loss sources.
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challenging frequency range!
Theory + proof-of-concept!

-
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\  this work

Phys.Rev.Lett. 129 (2022) 26, 261801
(a new NU-Stanford-Fermilab collaboration) f""‘”S ° M S .
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SQMS bonus: We also found that a single-
electron qubit is a sensitive DM search in a
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Quantum Simulation

0 We would (ke fo simulate

: : Neutrino
particle physics processes.

O Perturbation theory does not
always work!

Nucleus

O Feynman:  Nature isu't classical, dammit! and (£ you want to make a simulation of
nature, you'd befter make it quanfuim mechanical, and by golly 1's a wonderful
problem, because it doesn't look so easy.”



Quantum Simulation

O But why should we make it quantum mechanical?

O Here 15 a reason: Stmulating a quantum system evolving tn time ts numerically hard!
A “sign problem”
(t) = e My(0)

Rapid oscillation!

A quantum system will keep track of this tnherently



Quantum Simulation

0 What would we simulate?

O For example, some day, Hadronization

O Neutrino nteracting with a nucleus.

O Processes in the early Universe

Detection
~ Hadronization
hadrons @(@

Fragmentation

partons @)D @ ...







The Muon

O Yes, that muon!
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