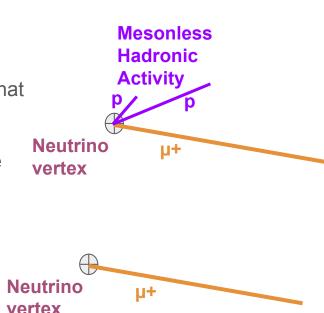
Mesonless $\overline{v_{\mu}}$ CC Cross Section @ ProtoDUNE-ND

Andrew Cudd, Elise Hinkle, Saba Parsa, Brooke Russell, Tammy Walton

ProtoDUNE-ND First Analysis Meeting October 20, 2023

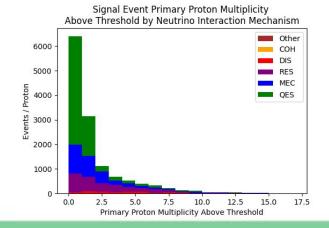

Outline

- 1. Review of Analysis Goals
- 2. Bern Single Module Data Reprocessing Activities
- 3. Preliminary Selection using ML Reco Information from CAFs

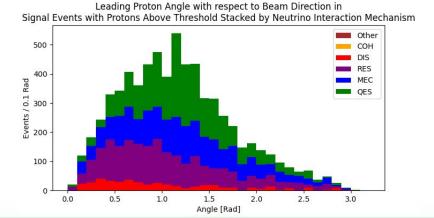
Review of Analysis Goals

Mesonless $\overline{v_{\mu}}$ **CC Cross Section**: Signal Definition

- The goal of the group is to start with an exclusive channel having a simple topology and realistic and practical measurements
- The signal topology includes an interaction event in the 2x2 that has the following characteristics:
 - <u>Required</u>: a long track contained or exiting
 ProtoDUNE-ND which is identified as a muon candidate
 - Not Required: short track(s) contained in the 2x2 or MINERvA which are not identified as mesons
- The proposed differential measurements are:
 - **Proton** multiplicity in the vertex region
 - Leading proton momentum
 - Sub-leading proton momentum
 - Opening angle between the muon and leading **proton**
 - Opening angle between the leading and sub-leading protons

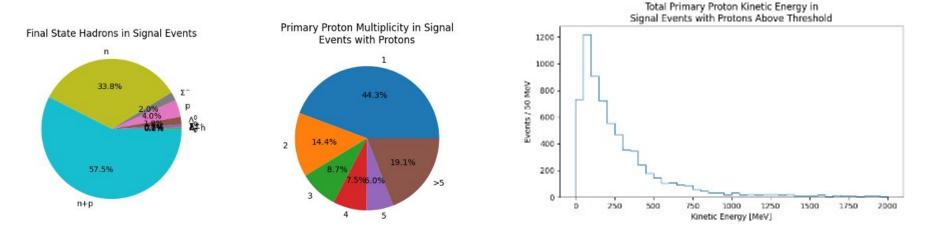


From: ND Prototypes Sept. 2023 Analysis Workshop Analysis Viability & Systematics Slides


Proton kinematics

Most likely report measurement in proton kinematics → momentum (or KE) and angle

Sharp edge on proton momentum due to threshold and nuclear effects


11

Bern Single Module Data Reprocessing Activities

Main contributor: Elise Hinkle

Mesonless $\overline{v_{\mu}}$ **CC Cross Section**: Events with Protons

- Based on truth studies, almost two-thirds of signal events are expected to include protons
- Of these events with protons, more than half are expected to include **more than one proton**
- **Note:** while we've performed some truth studies assuming a tracking threshold of 3 cm, the truth multiplicity studies below do not require any sort of tracking threshold
- We also need to understand our tracking threshold better in order to define the "mesonless" aspect of our signal

Bern Module Data Usage Goals

- Implement selections on events with **high trigger density** (e.g. protons, neutrino-like vertices, etc.)
 - Started selection of **fully isolated proton tracks** with *module0_flow*-ed Bern single module data, but waiting for reprocessed data to continue
- Perform hit-, cluster-, and track-level comparisons of data/MC selections
- Identify and start to resolve challenges related to studying events with higher trigger density

First step: reprocessing Bern single module cosmics data

Contribution #1: Flow Version Comparison

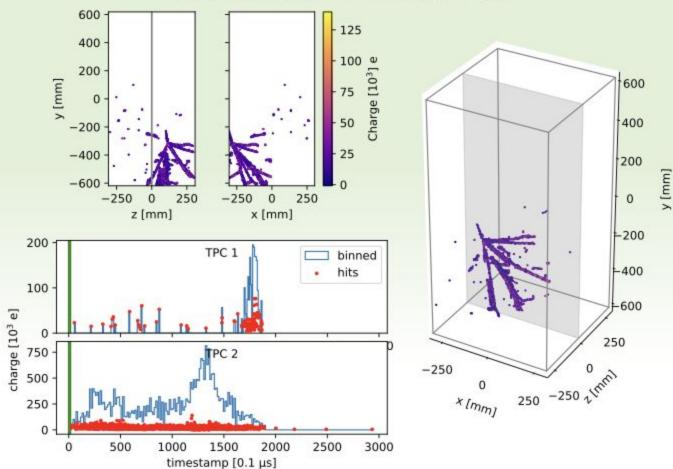
• What did we do?

- Created <u>snapshot</u> of differences between tools available in *module0_flow* (old flow) and *proto_nd_flow* (new flow)
- Potential use cases:
 - Quickly identify tool inputs, dependencies, and outputs, check dataset references, and compare old and new flow structure without having to sift through code
 - Identify tools which still need to be implemented or updated for reflow of Bern Module Data with proto_nd_flow
- Beyond the reflow, how does this help our analysis?
 - Initially started to build proton selection around *module0_flow*, so understanding differences between flow versions is essential in successfully adapting selection to work with reflowed data

Contribution #2: Validation Methods

• What did we do?

- Adapted LArPix single module event display for reflowed single module data
- Improved usability of event display by integrating into interactive Jupyter notebook
- Event display now resides in <u>relevant branch within *ndlar_flow* Git repository</u>

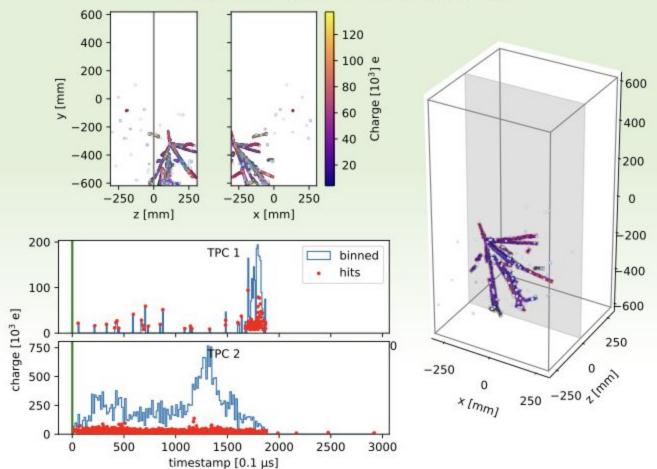

• Potential use cases:

- Visualize and evaluate charge-only reflowed single module data
- Visually compare charge/calib_prompt_hits, charge/calib_final_hits, and charge/raw_hits datasets within proto_nd_flow-ed data and with charge/hits dataset from module0_flow-ed data
 - Examples in <u>slides from Sept. 22 2x2 Simulation & Calibration Meeting</u>
- Beyond the reflow, how does this help our analysis?
 - Enables visualization of reflowed Bern data events included in proton selection and future selections for charge data/MC studies

proto_nd_flow

Event 36301, ID 36301 - 2022-02-09 16:31:26 UTC

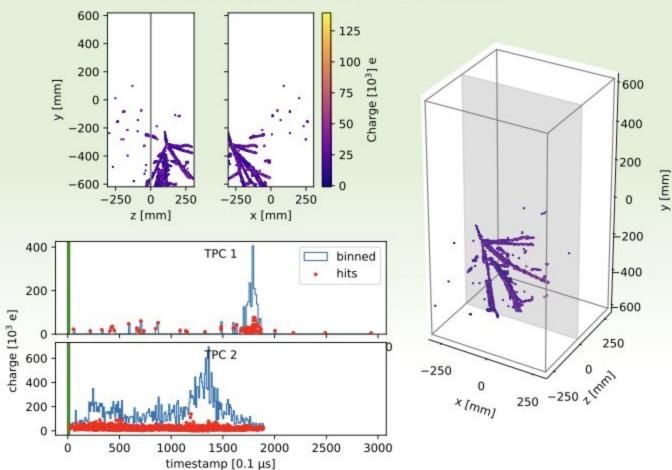
charge/raw_hits



module0_flow

Event 36301, ID 36301 - 2022-02-09 16:31:26 UTC

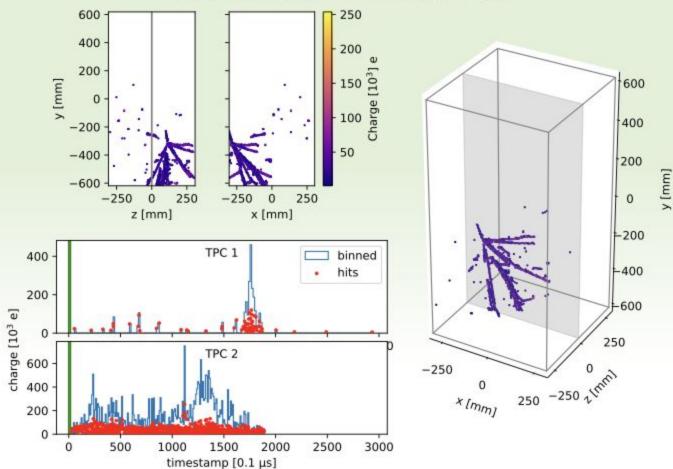
charge/hits


y [mm]

proto_nd_flow

Event 36301, ID 36301 - 2022-02-09 16:31:26 UTC

charge/calib_prompt_hits

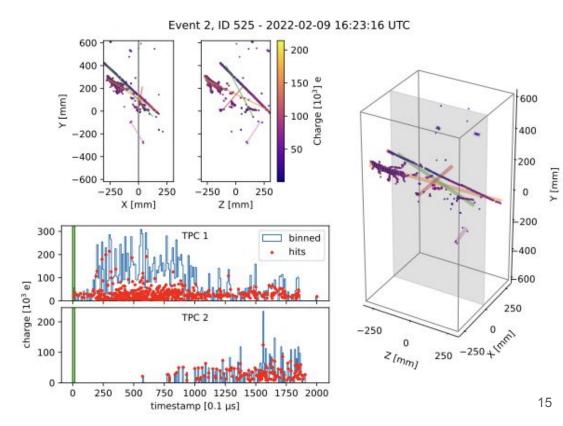


13

proto_nd_flow

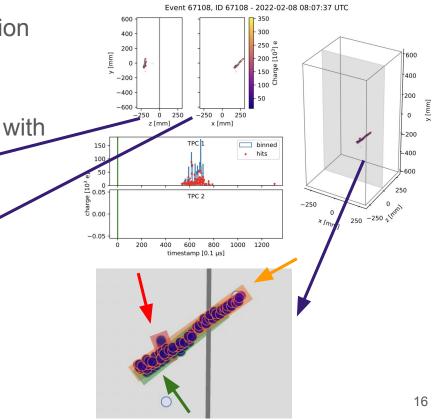
Event 36301, ID 36301 - 2022-02-09 16:31:26 UTC

charge/calib_final_hits



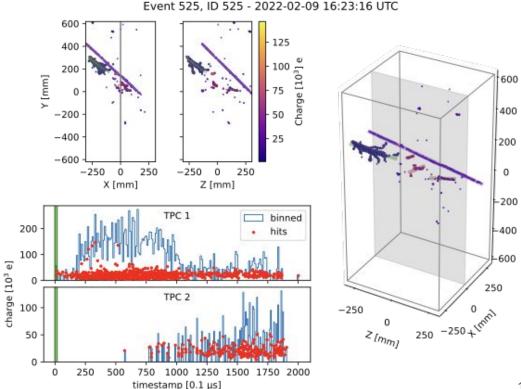
E. Hinkle | September 22, 2023

Contribution #3: Low-Level "Reconstruction"


• What did we do?

- Adapted tracklet reconstruction code from module0_flow to work with datasets in proto_nd_flow
- Currently working to iterate on tracklet reconstruction to eliminate small, redundant tracklets

Realities of Reprocessing Bern Module Data


- Current calibration-level track reconstruction is not robust in dealing with higher trigger density tracks
- Multiple overlapping tracks reconstructed with conflicting orientations

Contribution #3: Low-Level "Reconstruction"

• Potential use cases:

- Help in event selections for charge data/MC studies
- Contribute to other calibration tasks using flow-level data and MC
- Beyond the reflow, how does this help our analysis?
 - Sorting hits into tracks is necessary for proton selection for data/MC studies
 - Improving on existing tracklet reconstruction code is necessary for use in proton selection (see <u>ND</u> <u>Prototypes Analysis Workshop</u> <u>Charge Data/MC Study slides</u>)

[mm]

Next Steps

- Continue to help with Bern module reflow and low level reconstruction tasks in service of proton selection
- Adapt initial version of fully isolated proton track selection for reflowed files
- Make hit-, cluster-, track-level data/MC diagnostic plots
 - Reconcile any disagreements which arise
- Create selections for more complex topologies (e.g. neutrino-like vertices)

Preliminary Selection using ML Reco Information from CAFs

Main contributor: Andrew Cudd

Selection details

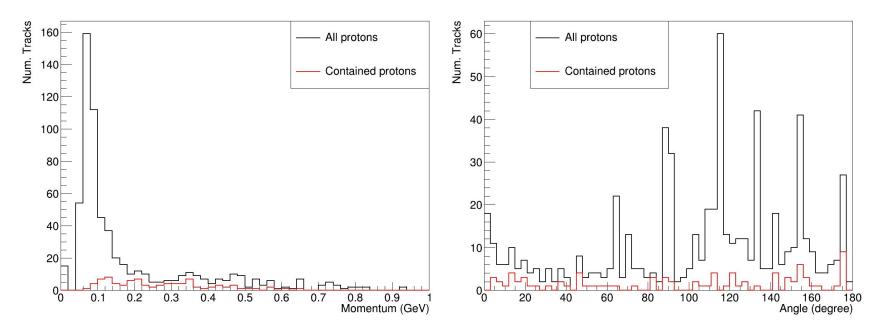
Attempted a rudimentary selection for mesonless (technically CC0pi) events using the CAFs (plots are from structured CAFs) – only reco information used

Selection steps – loop over each interaction in each spill:

- Require 1 muon (either +/-), 0 pions, and N protons as primary particles (no cuts on photons or electrons tagged as primaries)
- No requirement on the muon entering/exiting MINERvA
- No fiducial volume cuts
- No containment cuts

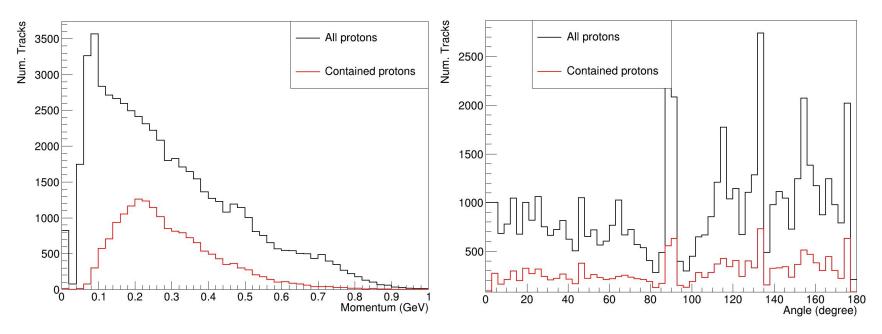
Basically selecting for particle content to obtain the most events

Selection issues

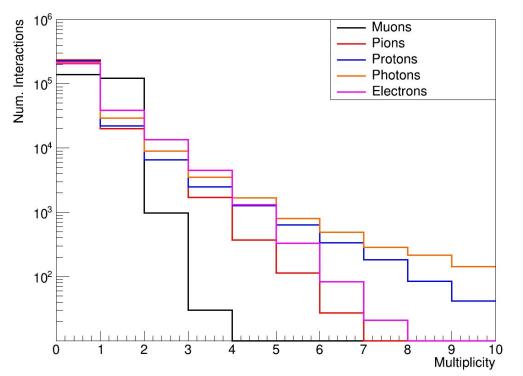

Main problem is the extremely low efficiency of selecting CC0pi events \rightarrow out of 151353 spills we find **590 / 264139 ~ 0.2%** interactions that satisfy the particle selection criteria

Related the primary particle multiplicity (muons/pions/protons) does not look as expected given the NuMI beam energy

For example, according to the CAFs, most interactions do not have a primary muon (i.e. more NC than CC events)


Kinematic distributions also may look somewhat strange, but these are either known effects or difficult to quantify without truth information

Selected proton kinematic plots


All = primary protons in selected interactions; and the contained protons sample also includes a length > 2 cm cut on track length

All candidate proton kinematic plots

All = candidate primary protons from all interactions; and the contained protons sample also includes a length > 2 cm cut on track length

Primary particle multiplicities

Counting number of particles of a given type tagged as primary

Particle type according to reconstructed PID

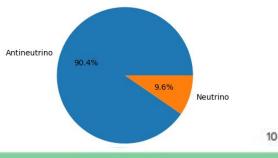
Most likely multiplicity for any particle type is zero

Average particle multiplicity is 1.4 total per interaction

Summary

- Mesonless $\overline{v_{\mu}}$ CC cross section measurements rely on (among other things):
 - Successful **proton reconstruction and identification**, which can be evaluated using reflowed Bern single module data
 - The ability to implement a **selection using CAF files**
- Our involvement in the Bern single module data reflow effort includes contributions to documentation, visualization, and calibration-level reconstruction
- Unexpected features found while implementing a selection using (ML Reco) CAF files, such as more NC events than CC events in all interactions, clear substructure in proton kinematics distributions, and a very low selection efficiency for our signal definition

Backup Slides


Signal contribution

Signal events are roughly half quasi-elastic scatters, half meson-exchange and resonant pion production, and almost negligible deep inelastic contribution

All of this at least at the truth level, which may change once reconstruction is factored in

Primary signal/background migration will be mis-identifying pions (and kaons) as protons and vice versa Signal Event Neutrino vs. Antineutrino Breakdown

Additional contributions of particles near detection threshold and neutrino meson-less events as the signal signature is the same

