

Managed by Fermi Research Alliance, LLC for the U.S. Department of Energy Office of Science

Magnet R&D Status Reports (MDP/non-MDP): FNAL REBCO Program

Vadim Kashikhin

REBCO Round Table Meeting

November 2, 2023

Overview

- COMB magnet development with STAR[®] wires under SBIR with AMPeers
 - Phase I (completed)
 - Built and tested a 2-layer dipole magnet in LN₂
 - Phase II (setting up the subcontract)
 - LHe test of the Phase-I magnet
 - Fabrication of a 4-layer magnet and test in LN₂/LHe
- COMB magnet development with CORC® cables under MDP
 - Studies on short cable samples
 - Problems with large degradation (~50%) discovered while bending them to 50-60 mm diameters
 - New cable with an improved flexibility is procured
 - Will repeat the bending experiments on new cable before coil fabrication
 - Fabrication and test of the coil fitting into 120-mm bore of a Nb₃Sn magnet
 - Standalone magnet test in LN₂ and LHe
 - Hybrid test as an insert in Nb₃Sn magnet

SBIR with AMPeers: highlights

- Phase-I (completed in 2023)
 - STAR[®] wire fabrication by AMPeers LLC 2x5-m long pieces with 11 tapes and the self-field I_c of ~600 A at 77 K
 - Design and fabrication of a COMB demonstration magnet with 60 mm clear bore
 - Testing in LN₂
 - Ultimate target was 90% I_c retention after winding; 93-99% I_c retention achieved
- Phase-II (2024-25)
 - LHe test of the Phase-I magnet (end of 2023)
 - Manufacturing ~100 m of STAR[®] wire (2024)
 - Design and fabrication of a 4-layer COMB dipole magnet (2024-25)
 - Testing the magnet in liquid helium to demonstrate >5 T field in a 60-mm bore generated by the HTS coil (2025)
 - Possible hybrid test, if supported my MDP

Long STAR® wire testing

- The 5-m long STAR[®] wires were tested in liquid nitrogen prior to the coil winding
 - established the reference I_c in 595-606 A range using the electrical field criterion of 0.4 $\mu\text{V/cm}$

11/02/23

‡ Fermilab

- the n-value between 8-9

COMB magnet design

- 60 mm clear bore
- Two half-coils made with two layers of STAR[®] wire
 - total length of the cable per half-coil is 4.76 m including the leads
 - conductor is wound into a continuous channel without internal splices
- Three copper adapters
 - connect the half-coils together and to the power supply
 - each half coil can be powered individually
- Redundant voltage taps at each wire end

3D magnetic analysis

- A complete 3D magnetic model was created as knowing the peak magnetic field on the conductor was necessary for the purposes of this project
 - intersection of the magnet load line with the measured wire characteristic gives the I_c of about 450 A during the magnet test in liquid nitrogen

🛟 Fermilab

11/02/23

Magnet fabrication: coil winding

- The magnet fabrication started from manually winding the voltage taps into the support structure of the inner layer of half-coil 1
- It was then followed by manually winding the STAR[®] wire 131 into the same channel, securing the second layer structure on top of the inner layer and proceeding with the voltage taps and conductor winding procedure for that layer
- The same steps were repeated for the half-coil 2 wound from the STAR[®] wire 151

Magnet fabrication: ground insulation and lead support

- The two half-coils were assembled with the lead support structure on one end and the retaining ring on the other
- The ground insulation consisted of ~0.5 mm thick polyester was installed around the coils
- The tubes terminating the leads were secured inside of the copper adapters installed in the lead support

Magnet fabrication: iron yoke and Hall probe array

Magnet testing

- The magnet testing consisted of four cool-downs from room to liquid nitrogen temperature, ramping the current to measure the resistive transitions and magnetic field measurements
 - first and second cool-downs: the half-coils were powered in series
 - third and fourth cool-down: each half coil was powered individually
- The current was ramped with 5-10 A/s ramp rate to the maximum of ~550 A (I_{max}), which provided enough data points to measure the resistive transitions
- The magnet was not (intentionally) quenched as it was not the objective of liquid nitrogen testing (and the DAQ system would not allow to properly detect and characterize the quenches)
 - these studies are planned for the liquid helium tests with a different system (VMTF)

Magnet testing

Test condition	Run #	I _{max} (A)	I _c (A)	n-value	Peak transfer function (T/kA)	Expected I _c (A)	I _c retention (%)
STAR [®] wire 131 standalone	2	681	599	8.1	0.192	(595) reference value	(100) reference value
	3	776	595	7.6			
	4	819	600	8.0			
	5	851	600	8.1			
	6	834	596	7.9			
	Minimum	776	595	7.6			
STAR [®] wire 151 standalone	1	806	620	9.3		(606) reference value	(100) reference value
	2	836	617	9.1			
	3	836	611	9.0			
	4	801	606	8.7			
	Minimum	801	606	8.7			
STAR [®] wire 131 two coils on	1	502	455	6.4	0.604	446	99.3
	2	551	459	7.6			
	3	510	452	6.4			
	4	531	445	6.6			
	5	531	443	6.4			
	Minimum	531	443	6.4			
STAR [®] wire 151 two coils on	1	502	425	9.5	0.094	455	92.7
	2	551	436	9.0			
	3	510	425	7.6			
	4	531	423	7.6			
	5	531	422	7.5			
	Minimum	531	422	7.5			
STAR [®] wire 131 one coil on	1	550	453	6.4	0.612	457	99.1
	2	552	454	6.3			
	Minimum	550	453	6.3			
STAR [®] wire 151 one coil on	1	532	447	9.4		466	95.2
	2	531	444	8.0			
	Minimum	531	444	8.0			

Magnetic measurements

- Array of three Hall probes in the magnet bore
 - positioned to measure the dipole field component on the magnet axis
 - one probe was placed at the magnet center and the other two +/- 50 mm apart
- Calculated (solid lines) and measured (markers) dipole field on the magnet axis are shown
- There is a good correlation between calculated and measured data, which means all the turns retained their geometry after the cool-down and energization

Summary of Phase-I SBIR with AMPeers

- HTS magnet based on COMB technology with a 60-mm clear bore was designed, fabricated and tested in liquid nitrogen at Fermilab using STAR[®] wires produced by AMPeers
 - the measured critical current retentions for the coils were in 93-99% range, which exceeded the ultimate project target
 - the magnet went through four thermo-cycles and multiple energization cycles without degradation of electrical nor structural properties
- It was the first experimental demonstration of a multi-layer COMB magnet fabricated with ~10 m of REBCO conductor
 - the results indicate that the COMB magnet technology is compatible with the STAR[®] wires and allows fabrication of magnets with aperture dimensions relevant for future high energy physics applications
 - the FY23 MDP milestone (COMB demonstration with STAR[®] wires) is complete
- The magnet will get re-assembled with a larger iron yoke and tested in LHe

R&D with CORC® cables: highlights

- Extensive studies on short cable samples
 - Problems with large degradation (~50%) discovered while bending them to 50-60 mm diameters in the COMB structure
 - It has not been previously observed on uniaxial-(hairpin)-bent samples
 - Further analysis performed by ACT revealed the issues with drying lubricant and high surface roughness on latest REBCO tapes from Superpower, which hampered the bending performance
- The next generation of CORC[®] cables have been optimized by ACT to accept tapes with high surface roughness using new lubricant formula, winding method, and production parameters that allowed to reach >80% I_c retention
 - A 25-m long CORC[®] cable with improved flexibility has been procured
 - Will repeat the bending experiments on short samples before magnet fabrication
- Fabrication and test of COMB coils fitting into 120-mm bore of a Nb₃Sn magnet
 - Standalone magnet test in $\rm LN_2$ and LHe (2024) with a goal is to reach 5 T in 100-mm bore
 - Hybrid test as an insert in a Nb₃Sn magnet (2025) with a goal is to demonstrate a hybrid HTS/LTS operation

5 Fermilab

Studies on short CORC® cables

3D-printed 316L sample holder with serpentine channel and 3 bends

- Critical current of CORC[®] cables before and after winding into the COMB structure with 100 mm bore:
 - ~56% I_c retention in the early CORC[®] designs
 - Improved to ~80% $\rm I_{c}$ retention in the next generation cables

