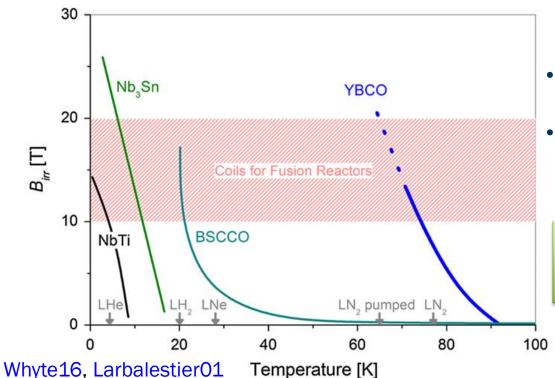


REBCO work at LBL

Acknowledgments


- U.S. Magnet Development Program, DOE Office of HEP
- SBIR programs, DOE Office of HEP
- DOE Office of FES

Colleagues at LBL, ASC/FSU, BNL and FNAL

REBCO can be the dream magnet technology for future circular colliders

- 20 T dipole field at 20 K with LH₂
- Presently the only conductor with a dozen vendors and a potential market [Vlad's talk]

A capable, affordable and sustainable collider

Today REBCO is a curious nightmare

- Least advanced magnet technology
 - 4.5 T maximum dipole field so far (EuCARD2 Feather2 magnet)

- We know little about it
 - Lots of open questions

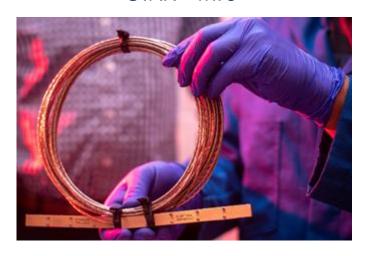
We try to address a few selected driving questions

- How to make magnets using REBCO conductors?
- What kind of conductor works?
- What's the maximum field we can generate?
- What's the magnet performance? What are the performance-limiting factors? How do they fail?

So what?

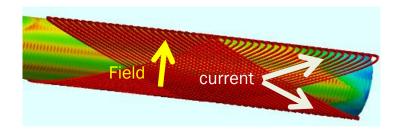
We focus on round wires with industry partners

SBIR programs enabling effective collaboration


CORC® wire

https://www.advancedconductor.com/

STAR® wire


http://www.ampeers-llc.com/

CCT is the main design for the baby magnets

- Canted cosθ design is attractive for high-field magnets
 - Reduce conductor stress
 - Provide good geometric field quality
 - Cancelled solenoid field lowers efficiency
- Leverage the effective development for Nb₃Sn CCT
 - Wax-impregnation for STAR® wires by José Luis and Diego

Meyer+Flasck70, Arbelaez22

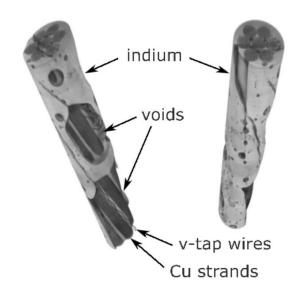
We are making tools to build magnets

Reproducible winding

REBCO is brittle and sensitive to handling

Human interface

Master

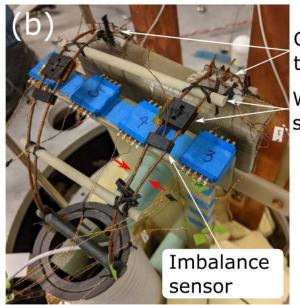

We are making tools to build magnets

Low-resistance termination

 < 50 nOhm up to 12 kA at 4.2 K

A first prototype one on a 6-around-1 STAR® cable

Micro-CT image from U. Houston

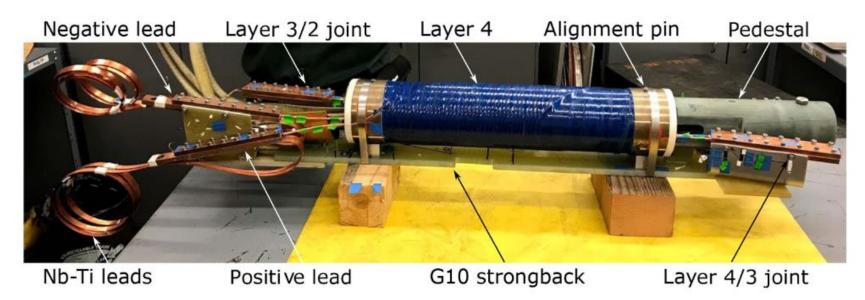


We are making tools to understand magnets

Diagnostic instrumentation for insight into magnet behavior

- Acoustic sensing
- Magnetic sensing
- Fiber-optic sensing

Magnetic sensing, more from Reed's talk


Current transducer

Wire spacers

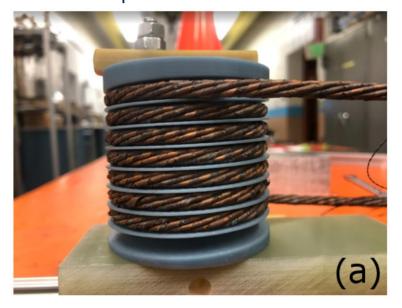
Teyber22

C2 with CORC® generated 2.9 T dipole field at 4.2 K

C3 with CORC® aims at 5 T dipole field at 4.2 K

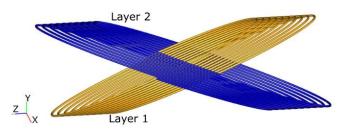
- Test the subscale version by December
- Test the full version in 12 months.

Subscale C3



s1 with STAR® wires aim at 2.9 T stand-alone, 1.2 T @ 8 T background field

s0 with STAR® wires


Little solenoid wound using transposed STAR® cable



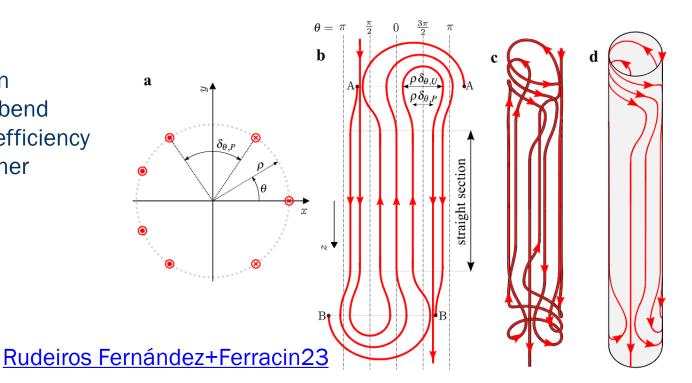
150-mm aperture design: dipole and combinedfunction for muon collider. Pushing the field!

CCT dipole

Dipole-quad combined function

Number of layers			4			6	
Number of wir	es per layer	1	2	3	1	2	3
TF	$T kA^{-1}$	0.52	0.51	0.51	0.79	0.78	0.77
$B_{\rm p}/B_{1}-1$	%	5	2.4	0.5	2.2	0.4	0.2
L	$ m mH~m^{-1}$	11	12	13	30	34	40
$R_{ m min}$	mm		0				
OD	mm	229	262	294	270	319	368
$B_1(4.2 \text{ K})$	Т	5.6	8.3	10.5	7.2	10.6	13.2
$I_{\rm total}(4.2 \text{ K})$	kA	10.7	16.1	20.5	9.0	13.6	17.2
E(4.2 K)	$ m MJ~m^{-1}$	0.6	1.6	2.8	1.2	3.1	5.8
$B_1(20 \text{ K})$	T	3.8	5.6	7.1	4.8	7.2	8.9
$I_{\rm total}(20~{\rm K})$	kA	7.2	10.9	13.9	6.1	9.2	11.6
E(20 K)	$ m MJ~m^{-1}$	0.3	0.7	1.3	0.6	1.4	2.6
$l_{ m wire}$	${\rm km}~{\rm m}^{-1}$	0.4	0.9	1.4	0.7	1.4	2.3
$l_{ m tape}$	${\rm km}~{\rm m}^{-1}$	23	51	80	40	80	131

An initial look

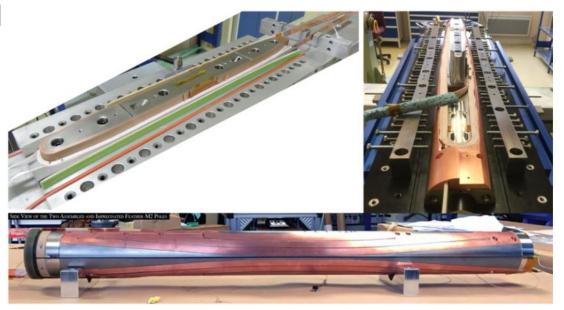


Explore new magnet designs for higher fields

Uni-layer design

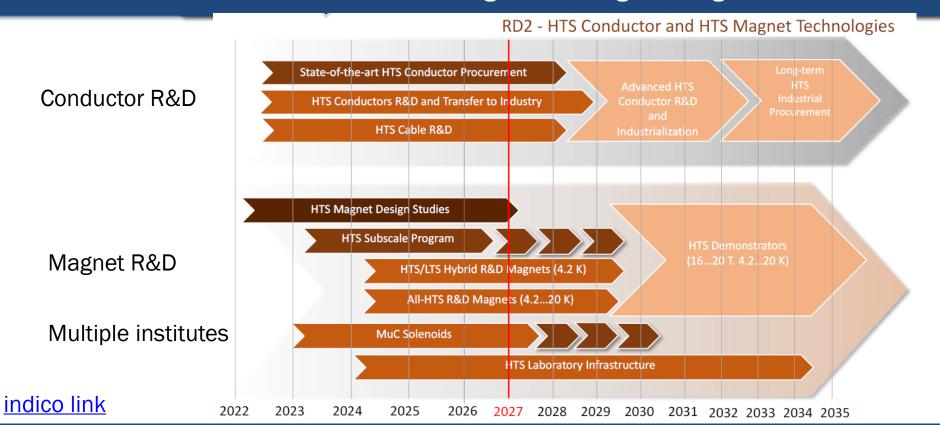
 Addressing bend radius and efficiency issues of other designs

Copy & paste impressions of the European activities from the ongoing HFM meeting



EU has led the development of REBCO magnet technology

Successfully demonstrated REBCO dipole magnets using Roebel cable, generating 4.5 T at 4.2 K



Rossi+Senatore21

Demonstration the suitability of HTS is one of three objectives of the new High Field Magnet Program

Stacked-tape cable is a focus for HFM – CERN

Overview of CERN activities REBCO Coils

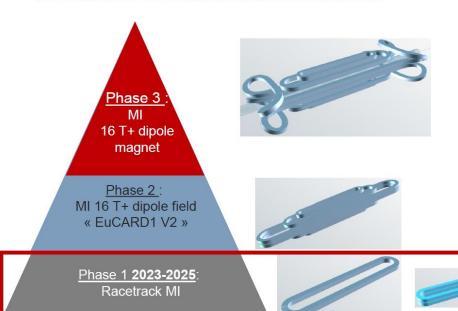
- Short Model Coil HTS Program to test novel cables in a coil configuration: windibility, quench protection,
 - Target: 5 T 8 T at up to 10 K in a background field or 12 T-15 T
- Racetracks
 - Full HTS
 - Hybrid (HTS in Nb₃Sn background field). Synergy with RD4 and with the extensive SMC Nb₃Sn program carried out at CERN
- Pancake solenoids

CERN is also studying round wires

Superconducting cables

• Designed, built and operated - as from mid 2022 - a cabling

- Designed, built and operated as from mid 2022 a cabling machine for making round, flexible and insulated REBCO cables Work done in the framework of HL-LHC Cold Powering: up to 18 kA @ 60 K and 0.7 T. About 1 km needed, in ULs of 2-4 m. No degradation of conductor after cabling
- Studied **different cable layouts** (core, number of layers, Φ ,...)
- Implementing a reel-to-reel system for cabling long unit lengths
- We will use of these cables in coils



Stacked-tape cable is a focus for HFM – CEA

1. Program roadmap: Development main phases

Demonstrator of the metalinsulated REBCO high field magnet coils - CEA

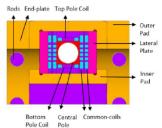
KE5647

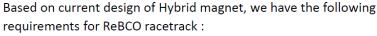
Start: 01/04/2023 End: 31/03/2025

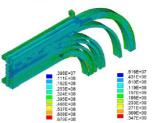
HFM Annual meeting Oct. 31th, 2023 - Demonstrator of the metal-insulated REBCO high field magnet coils-

Thibault Lécrevisse

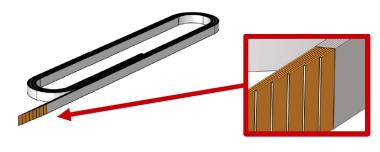
31/10/2023




Stacked-tape cable is a focus for HFM – PSI


Subscaling

ReBCO racetracks chosen for pole coils in upcoming Hybrid common-coil (LTS/HTS) magnet at 4.2 K (design by D. M. Araujo and CHART team).



- 4-mm tape width
- 8 tapes in soldered stack
- 7.5 mm minimal bending radius

Pictures taken from pending paper of Douglas Martins Araujo

Insulated solder-stack block coil 16-T benchmark

indico link

Page 22

Stacked-tape cable is a focus for HFM – INFN

Summary

- Ongoing R&D to increase TRL of HTS magnets
- Started a program for small HTS coils production and test
- INFN is building and testing HTS magnets in next two years
- Update the test stations for variable temperature
- Several synergies in developing HTS magnets have yet to be fully exploited
- HF and UHF HTS solenoids will be one of the leading themes in an upcoming INFRA-TECH EU call
- Dedicated R&D for MgB₂ conductor for new magnets, refurbished ones and sustainability (see IRIS by L. Rossi on Thursday)

HFM annual meeting 2023, CERN

16

IMCC is exploring REBCO magnet technology

Magnet development targets

Complex	Magnet	Aperture (mm)	Length (m)	Field (T)	Ramp rate (T/s)	Temperature (K)
Target, decay and capture channel	Solenoid	1200	19	20	SS	20
6D cooling channel	Solenoid	901500	0.080.5	415	SS	4.220
Final cooling channel	Solenoid	50	0.5	> 40	SS	4.2
Rapid cycling synchrotron	NC Dipole	30x100	5	± 1.8	4200	300
Rapid cycling synchrotron	SC Dipole	30x100	1.5	10	SS	4.220
Collider ring	Dipole	160100	46	1116	SS	4.220

- Focus is high-field solenoids for cooling
- More information in the backup slides of Luca's presentation

How can we more effectively develop the REBCO technology?

- REBCO holds the promise of highest fields and lowest cost
 - If true, critical for next circular colliders

 What results in 3 years can most effectively help with a muon collider on the U.S. soil?

