

REBCO coils based on Twisted Stacked-Tape (TST) cable

A.V. Zlobin, Fermilab 11/02/2023

REBCO Round Table, Nov 2 – 3, 2023 Fermilab

TST cable allows small easy-bend radius and cable twist

OPEN ACCESS OP Publishing

Supercond. Sol. Technol. 35 (2022) 043001 (12pp)

Topical Review

Development of RE-Ba-Cu-O superconductors in the U.S. for ultra-high field magnets

(b)

Mahesh Paidpilli and Venkat Selvamanickam*

Most efficient tape use

Roebel Cab

STAR Wire

2014WAMHTS-1 REBCO Twisted Stacked-

A U-turn portion of one turn coil demonstrating a curved saddle winding on a 50 mm diameter tube. The cable is composed of 50 YBCO tapes.

Applications

Small diameter magnet 3D HEP accelerator magnets, generator and motor magnets

Issues:

- tape relative axial shift during winding
- twist pitch variation

IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, VOL. 27, NO. 4, JUNE 20

- Minimal bending D~8 mm
- For 4 mm wide 0.1 mm thick tape minimal L_t~80 mm

Bi2212 and REBCO SMCT small-aperture insert coils

Coil parameters.

Parameter	Bi2212	REBCO
Number of layers	2	2
Number of turns	9 (3 IL+6 OL)	10 (4 IL+6 OL)
Coil ID-I/ID-O/OD, mm	9/20/59	19/25/59
Yoke R _{in} , mm	30	30
Yoke permeability	1000	1000
Coil B _{max} /I, T/kA	3.609/8	4.06/8
Coil B _o /I , T/kA	3.503/8	3.59/8
B _{max} /B _o	1.03	1.13
L. mH/m	0.200	0.345

- The coils will be tested separately and as inserts into Nb₃Sn coils
- Load lines for Bi2212 and REBCO inserts (with 16-tape cable) are close
 - good for direct technology and performance comparison

U.S. DEPARTMENT OF Office of Science

REBCO coil design and TST cable twist during winding

Coil design

U.S. MAGNET

DEVELOPMENT PROGRAM

U.S. DEPARTMENT OF Office of Science

U.S. MAGNET DEVELOPMENT PROGRAM

REBCO coil development plan and status

Spool	Tape length, m	Spool lc, A	Cable length, m	Cable length, m	Coil length, m
			16	12	8
			tapes	tapes	tapes
1	29	167	7.3	9.7	14.5
2	30	164	7.5	10.0	15.0
3	30	166	7.5	10.0	15.0
4	32	169	8.0	10.7	16.0

- 121 m (4 spools) of 4-mm wide 0.1 mm thick REBCO tape with test data have been provided by LBNL
- 480 m (4 spools) of 4 mm wide 0.1 mm thick SS-304 Annealed AMS-5513 tape

- Practice coil will use 16-tape stack cable made of 4 mm wide 0.1 mm thick SS tape
 - plastic parts and tape are available
- The REBCO coil will use 16-tape stack cable with 12 REBCO tapes and 2 SS tapes on each side
 - REBCO tape is available, preparing to procure coil parts from ULTEM

U.S. DEPARTMENT OF Office of Science

U.S. MAGNET DEVELOPMENT PROGRAM

20 T small-aperture hybrid dipoles for HC with Bi2212 and REBCO coils

Large-aperture dipoles/quadrupoles for MC with REBCO coils based on TST cables – design approaches

Status

- Arc magnets
 - 150 mm aperture D and combined Q/D

 - B_{op} =10.4 T with ~30% margin at 4.5 K => <u>2-layer Nb₃Sn coils</u> B_{op} ~8-9 T and G_{op} ~80 T/m with ~20% margin (B_{coil} ~18 T) at 4.5 K => <u>nested Q/D with 4-layer coils</u>
- IR magnets
 - B_{op}=8 T (D), B_{op}~11 T (Q) Aperture 80-180 mm

 - B_{des}=14-15 T with 2-layer Nb₃Sn coils
 - 20-30% (Q) and 45% (D) operation margin

Next steps

- Magnet coils need to be updated to implement Stress Management elements – *critical for brittle* superconductor!
- **REBCO** use
 - hybrid design at 4.5 K with B_{max} ~20 T + margin
 - HTS coil and operation temperature T~20 K

Presented at IPAC2012

Summary

- Recent studies show that TST cable can be used in shell-type high-field D and Q coils
 - stack twist to be provided coil straight part during winding
- 2L design concepts of REBCO D insert coil with TST cable and SMCT coil support structure are being developed at Fermilab
 - REBCO coil parameters with 16 tape cable are similar to Bi2212 coil parameters which allows direct technology and performance comparison
- Practice D coil to optimize the cable insulation, coil design, SMCT structure and coil winding technology is in progress
 - plastic coil parts have been printed
 - stainless steel tape of similar size has been procured
- REBCO tape for the first insert coil is available
 - material for the coil structure is being studied
 - coil structure procurement using ULTEM will start soon
- Demonstration of this cost-effective approach will be done in FY24
- Possibilities of using this technology for small-aperture (~50 mm) 20 T hybrid dipole and large-aperture (~150 mm) 10-16 T D or Q/D are being studied

U.S. DEPARTMENT OF ENERGY Office of Science