

Screen current effects, experiencing with quenching REBCO tapes, and implications

Ye Yang¹, <u>Tengming Shen¹</u>, Ramesh Gupta², Toru Ogitsu³

Lawrence Berkeley National Lab

2. Brookhaven National Lab

3. KEK

2023/11/02

Presented at the Fermilab REBCO Round Table Meeting

Work financially supported by the U.S. Department of Energy, Office of Science, Office of High Energy Physics through the US - Japan HEP collaboration, U.S. Magnet Development Program, Early Career Program, and benefit from projects supported by the DOE-OHEP SBIR-STTR program.

Outline and motivations

- Superconductor is a nonlinear magnetic material.
- · Its magnetization also decays with time.

- $\Delta M \propto J_c \cdot D_{eff}$
- LHC Nb-Ti dipole wire, D_{eff}=6-7 μm.
- High-Lumi LHC Nb₃Sn wire, D_{eff}~50 μm.

- Large screen currents affect both field quality and the ability of REBCO magnets to survive high fields.
 - Results of FEM models of KEK REBCO coils in a BNL Nb₃Sn magnet
- Experience with quenching REBCO tapes

SCIF (screen current induced field) in a hybrid magnet – overall design

BNL Nb₃Sn magnet:

Item	Unit	Value
Magnet type	-	2-in-1
Horizontal aperture	mm	31
Vertical aperture	mm	338
Central field	т	8.7
Nominal current	А	8000
Nominal current density	A/mm ²	425

KEK HTS coils:

Item	Unit	Value
Number of HTS tape	-	20
HTS Tape width	mm	4
Thickness of HTS layer	μm	2.2
Thickness of HTS tape	μm	310
Current of HTS coil	А	500
Center field	Т	0.8

US Japan HEP collaboration on high temperature superconducting magnets for accelerator facilities

Tengming Shen (US PI), LBNL; Toru Ogitsu (Japan PI), KEK

Xiaorong Wang (US CO-PI), LBNL; Ramesh Gupta, (US CO-PI), BNL; Naoyuki Amemiya (Japan CO-PI, Kyoto University).

REBCO (flat racetrack) coils

Modelling the Magnetization in HTS Tapes with FEM tool (COMSOL)

Boundary condition:

Resistivity of HTS film:

$$\rho_{HTS} = \frac{E_c}{J_c(T, B, \theta)} \left| \frac{\vec{J}}{J_c(T, B, \theta)} \right|^{n-1}$$

N value is fixed at 45

Critical surface for ReBCO tape:

Numerical Model – 2D infinitive FEM model

• Hall sensor is set at the center of the HTS coil with the interval of 2mm

Validating the modeling technique: The benchmark case

R. Gupta et al, Design, construction, and test of HTS/LTS hybrid dipole, *IEEE Transactions on Applied Superconductivity*, 28(3), 4002305, 2018 Coil construction and measurement financially supported by a SBIR award from US. DOE OHEP to Particle Beam Lasers, Inc. and BNL.

Measurement: $0 \rightarrow 25 \rightarrow 0 \rightarrow 50 \rightarrow 0 \rightarrow 75 \rightarrow 0, ...$

Simulation:

HTS Tape:

Manufacturer	: AMSC	0.20 x 12.1 mr	n Tape		
	YBCO	YBCO layer is	10 mm :	x 1.2 μm	
Description :	3R-174-1-37-38	Area (mm2):	2.420	Length:	30 mm
SAMPLE #	1	SC_Area (mm2):	0.012		
FIELD Dir.	PERP-H				

Thanks Ramesh for the information!

Return to the US-Japan case: Field and AC loss during energization of the Nb₃Sn Magnet and HTS coils

- Energized Nb₃Sn magnet first, then powered up the HTS coil with two cycles
- Bx and By are generated by the cases B//Tape and B⊥tape, respectively

SCIF by HTS coils during energization with LTS magnet field removed

- Case of B // c has a large loop about dBx ~ 10 mT
- The loop for the case B // ab only has dBy ~ 5mT

Screening Current distribution (B // Tape case)

Screening Current distribution (B // Tape case)

Screening Current (B \perp Tape case)

Decay of SCIF after Ramping Nb₃Sn Magnet

- Field decays as a function of time due to the resistivity of flux flowing
- Field increases because the shielding field is decreased
- Field decay at 2T background field for the case B // c seems faster that at 8T
- For the case B//ab, the field decay is faster at 8T

Lorentz Force at the HTS Film (B // Tape case)

Lorentz Force at the HTS Film (B \perp Tape case)

Tengming Shen| BERKELEY LAB

.

Deformation during the energization (B \perp Tape case)

Experience with impregnating and quenching REBCO tapes

S. Yin et al., Degradation of REBCO coated conductors due to a combination of epoxy impregnation, thermal cycles, and quench: Characteristics and a method of alleviation, J. Appli. Phys. 128, 173903 (2020)

Uncertainty with maximum allowable temperature during a quench

REBCO tape + Stycast1266

REBCO tape + Stycast2850 (filled resin)

REBCO tape + Stycast2850 + quench

Concluding remarks

- A tool developed for predicting SCIF for the upcoming US-Japan collaboration's test of KEK HTS coils at BNL.
 - Screening currents in HTS coils calculated by solving the T-A formulation.
 - The model was benchmarked with earlier measurement data at BNL.
 - Strong mechanical consequences.
- Experience with impregnating and quenching REBCO tapes
 - Further work needed to access the conductor limits.

HTS Tape

Stabilizer [Cu plating] 20µm Protection layer [Ag] 2µm -Superconducting Layer [GdBCO] 2 µm / [EuBCO+BHO] 2.5 µm Buffer layer [MgO, etc.] 0.7µm Substrate [Hastelloy®] 75 / 50 µm -

Products	Width [mm]	Thickness [mm]	Substrate [μ m]	Stabilizer [µm] ^{*5}	Critical Current [A] @77K,Self-field	Critical Current [A] @20K, 5T ^{*4}	Remarks
FYSC-SCH04	4	0.13	75	20	≥ 165	368	Non-AP*2
FYSC-SCH12	12	0.13	75	20	≥ 550	1,104	Non-AP*2
FYSC-S12 *1	12	0.08	75	-	≥ 550	-	Non-AP*2
FESC-SCH02	2	0.11	50	20	≥ 30	257	AP*3
FESC-SCH03	3	0.11	50	20	≥ 63	497	AP*3
FESC-SCH04	4	0.11	50	20	≥ 85	663	AP*3
FESC- SCH04(05)	4	0.07	50	5	≥ 85	663	AP ^{*3}
FESC-SCH12	12	0.11	50	20	≥ 250	1,990	AP*3
FESC-S12 *1	12	0.06	50	-	≥ 250	-	AP*3

77.3K

Sample:

• Width: 10 mm, thickness: 2.4 um

Fujikura measurements

Short Sample Limit

• Still can test the HTS coil in the background field of 2T at 77T with 200A (B//ab)

Thank You