

Conductor and Cable Challenges and Opportunities: Cable Tests for Fusion

Daniel S. Davis

REBCO Round Table, Fermilab

November 2, 2023

Coil Group: U.P. Trociewitz, Y. Kim, G. Murphy, C.L. English, C.T. Brady, J. Kvitkovic, G. Miller, W.S. Marshall Conductor Group: E.E. Hellstrom, J. Jiang, F. Kametani, J. Lu, J. Levitan, P. Lee Graduate Students: E. Martin, G. Bradford, S. Barua, A. Oloye L. Cooley, D.C. Larbalestier

Key Collaborators - LBNL: T. Shen PPPL: Y. Zhai ACT: D.C. van der Laan, J Weiss, Z. Johnson, K Radcliff

ASC-NHMFL is supported by US DOE-OHEP (DE-SC0010421, DE-SC0018666, DE-SC0018683), NHMFL Core Grant (NSF 2128556), FSU special allocation for Bi-2212 commercialization, the State of Florida, and the US DOE-MDP for much context and many collaborations. LBNL is supported by US DOE-OHEP-MDP under contract No. DE-AC02-05CH11231. PPPL was supported by the U.S. Department of Energy under contract number DE-AC02-09CH11466.

Magnet Testing is The Bottleneck to Ultra-High Field Applications

LBL-HTS-RC program: example of a simplegeometry coil series showing progressive performance and developing magnet technologies for 3D dipole geometries

Led to present MDP Bi-2212 program including Bi-2212 cable cosine-theta coils and high field solenoid testing and postmortems

7

Bi-2212 Cable Solenoid

Cross Section

Conductor \rightarrow UHF \rightarrow Modelling \rightarrow Cable/Solenoid \rightarrow Postmortem Program

Ultra-High-Field Solenoid Testing in the 31 T Resistive Magnet Demonstrates Conductor Capabilities and Magnet Technology

Like the LBCs, TEO-type coils are a costefficient vehicle to test materials and processes

Coil Specs:

Coil Name		TEO 1	TEO 2	TEO 3	
Wire	PMM No.	РММ180928 (Ф1.0 mm)			
	Insulation	TiO2 coat – Mullite Braid (Φ1.3 mm)			
ID; OD; Height [mm]		12.0; 34.2; 80.9	12.0; 37.5; 80.4	12.0; 37.4; 88.6	
Turn ; Layer (Total)		60.3 ; 8 (482)	59.2 ; 10 (592)	59.1 ; 10 (591)	
Innerbands		2 (Band)	2 (Band)	2 (Wind)	
Overband		Hastelloy C276	Hastelloy C276	Inconel X750	
Conductor		35 m	45 m	45 m	
Field Const.		7.2 mT/A	8.8 mT/A	8.1 mT/A	
Inductance		1.0 mH	1.7 mH	1.5 mH	
Ic Test at 12 T		> 500 A	> 500 A	270 A	

High Strength Bands MPa 55 50 45 40 35 30 25 20 17.7Co-wind

Stress with Reinforcement

peak source hoop stress (*J_E*B*R*) between 237 - 273 MPa

38 mm

Over-banding

Δ

Ultra-High-Field Solenoid Testing in the 31 T Resistive Magnet Demonstrates Conductor Capabilities and Magnet Technology

Like the LBCs, TEO-type coils are a costefficient vehicle to test materials and processes

Coil Specs:

Coil Name		TEO 1	TEO 2	TEO 3	
Wire	PMM No.	РММ180928 (Ф1.0 mm)			
	Insulation	TiO2 coat – Mullite Braid (Φ1.3 mm)			
ID; OD; Height [mm]		12.0; 34.2; 80.9	12.0; 37.5; 80.4 12.0; 37.4;		
Turn ; Layer (Total)		60.3 ; 8 (482)	59.2 ; 10 (592)	59.1 ; 10 (591)	
Innerbands		2 (Band)	2 (Band)	2 (Wind)	
Overband		Hastelloy C276	Hastelloy C276	Inconel X750	
Conductor		35 m	45 m	45 m	
Field Const.		7.2 mT/A	8.8 mT/A	8.1 mT/A	
Inductance		1.0 mH	1.7 mH	1.5 mH	
Ic Test at 12 T		> 500 A	> 500 A	270 A	

peak source hoop stress $(J_E^*B^*R)$ between 237 - 273 MPa

Robust Operation of High Temperature Superconducting Bi-2212 Magnets at 34 T and Ramp Rates Over 23 T/s !

Robust Operation of High Temperature Superconducting Bi-2212 Magnets at 34 T and ramp rates over 23 T/s

This robust operation of multiple coils in fields >30 T is an important demonstration to our collaborators including commercial partners Cryomagnetics Inc. and Oxford Instruments (OI) developing compact 25 T class research magnets, the US-DOE Magnet Development Program developing hybrid HTS/LTS 16 T dipoles, and Princeton Plasma Physics Laboratory (PPPL) pursuing fusion ohmic heating solenoids, as well as our own efforts at ASC towards >1.2 GHz NMR with an NIH-R01 submission.

7

Implementing New Insulation in Rutherford Cables Magnets

First 17 strand cable length insulated with pure alumina 9-strand Bi-2212 Rutherford cable is a surprisingly flexible and easy to work with conductor

Specs.: 9 strand (4 x 1.44 mm bare) 1500 denier 12-thread, 16 ppi 0.15 mm thick on flat side 0.2 mm thick on edges

Pure alumina braid

Inconel compression blocks

- No leakage in fully OPHT'ed Rutherford cable sample with pure alumina braid
- Very little to no embedding of fiber in Ag-matrix

~5 T Rutherford Cable Solenoid to Validate Alumina Braid Insulation

MPa

Bi-2212 Rutherford (BR) Cable Solenoids				
		BR-1	BR-2	
Wire	Product No.	PMM170725	PMM130723-1	
	Powder	nGimat (85 x 18)	Nexans (37 x 18)	
	Insulation	In-house coating(no top-coat)+mullite braid	Pure Alumina (Nextel) Braid	
	Diameter [mm]	Φ 0.8 (bare)	Ф 0.8 (bare)	
	ID	LBNL-1093	LBNL-1075	
Cable	Size, uses (length)	9-Strand, CCT leftover (8.5 m)	9-strand, winding/insulation tests (31 m)	
	Geometry	4.0 x 1.44 mm (bare) / 4.38 x 1.82 mm (ins.)	4.0 x 1.44 mm (bare) / 4.4 x 1.74 mm (ins.)	
ID ; OD ; Height [mm]		44.45 ; 69.67 ; 26.29	<mark>24.0</mark> ; 84.5; 55.0	
Turn ; Layer (Total)		6 ; 6 (36)	12.5; 14 (175)	
Magnet constant [mT/A]		0.708	2.876	
Inductance [mH]		0.064	0.7	
Conductor length [m]		6.5	30	
Status		Tested	Final Design and Test Winding	

Unique HTS Test-bed : 161 mm, 12 T LTS, 10 kA

12 T HTS Coil Test Bed

- 10 kA bus, 8 x 1.2 kA power supplies
 - Enables individual cable and cable magnet testing
- Magnet bore 161 mm, 200 mm access bore for leads, 128 ppm uncorrected homogeneity (1 cm DSV)
 Large bore enables insert magnets:
- To explore field generation and mechanical limits in strand-wound and cable wound coils
- To add additional means to improve field homogeneity (e.g., compensation coils, shims etc.)
- Implement novel HTS quench management

Features

- 1 kA, 7.5 kA, and 10 kA VCL probes
- FPGA control and IGBT quench management
- Variable dump resistors and varistors

A) Schematic of the 12 T LTS (red) magnet with a 200 mm probe access and a 161 mm cold bore for HTS insert (green);
B) Picture of the LTS & HTS support systems;
C) Picture of the 12 T magnet cryostat with external protection elements;
D) Picture of the top plate of the 12 T magnet during a recent test of an HTS Bi-2212 Rutherford cable solenoid;
E) Schematic of the 10-kA vapor-cooled-lead probe being prepared

IGBT Quench Circuit Upgrade

Cable-Coil/Sample Test Platforms

- A probe with 10 kA helium vapor cooled leads is ready to operate inside our 14 T, 161 mm large bore magnet
- Will accommodate Bi-2212 as well as ReBCO cable coils/samples
- We have existing 7.5 kA and 1 kA probes for lower current cables and wires with reduced heat load on the system.

Thermal Baffle Set

LTS lead extensions

Your cable/magnet mounts here in LTS field center

> Force support interface from probe to LTS 12

High-field insert solenoid wound from CORC[®] cables

Addresses main challenges of low-inductance HTS magnets

- Operate CORC[®] insert solenoid in **14 T background field**
- CORC[®] insert should have meaningful bore: 100 mm diameter
- High operating current: 4,000 5,000 A
- $J_{e} > 200 \text{ A/mm}^{2}$
- Operate at JBr source stress >250 MPa

CORC® cable layout

- 28 REBCO tapes of 3 mm width containing 30 μ m substrates

14 T LTS

(161 mm bore)

UNIVERSITY OF TWENTE.

• 4.56 mm CORC[®] cable outer diameter

CORC® insert layout

- 100 mm inner diameter, 143 mm OD
- 4 layers, 45 turns
- 18.5 m of CORC[®] cable
- Wet-wound with Stycast 2850
- Stainless steel overbanding between layers
- This work was in part supported by the US Department of Energy under agreement numbers DE-SC0009545, DE-SC0014009 and DE-SC0021710.

Danko van der

CCA21, October

Laan et al.,

14th, 2021

Advanced Conductor Technologies www.advancedconductor.com

FIELD LABORATOR

CORC[®] insert solenoid test: summary

CORC® insert impact

- First HTS insert magnet tested at high current (>1 kA) in a background field
- Stable operation likely due to current sharing between tapes in the CORC[®] cable
- Combination of high I, J_w and JBr demonstrated at 16.8 T peak field

Applied field [T]	Central field at <i>I</i> _c [T]	Peak field at I _c [T]	/ _c (0.1 μV/cm) [A]	<i>n</i> -value [-]	J _w [A/mm²]	J _e [A/mm²]
10	12.25	13.35	5,315	7.9	203.9	340.3
12	14.08	15.09	4,908	9.1	188.3	314.2
14	15.86	16.77	4,404	10.5	168.9	281.9

D. C. van der Laan, et al., Supercond. Sci. Technol. (2020) https://doi.org/10.1088/1361-6668/ab7fbe

First high-current CORC® insert solenoid successfully tested

- Operation at over 4.4 kA in 14 T background field, generating a peak field of 16.77 T
- Operated at 282 A/mm² and 275 MPa JBr source stress at 14 T background field

Conductor challenges when going to higher field and larger coil diameters

- A Central Solenoid in a future compact fusion reactor may have a JBr of 200 A/mm² x 20 T x 0.2 m = 800 MPa (source stress)
- How to further optimize the CORC[®] conductor to allow higher hoop stress, but also a higher irreversible strain limit?

Fatigue testing a Prototype Ohmic Heating (OH) CORC Cable Solenoid

Prototype Ohmic Heating CORC Cable Solenoid			
Cable	Product No.	ACT- CORC, 20191113-3	
	Таре	SP M4-534-105 0508	
	Insulation	Heat Shrink + Kapton between Cu	
	Insulation	tape and cable	
	Diameter [mm]	5.86	
ID ; OD ; Height [mm]		119; 152; 60	
Turn ; Layer (Total)		6; 2 (12)	
Magnet	t constant [mT/A]	0.102	
Ind	uctance [mH]	~ 0.019	
Condu	uctor length [m]	5.1	
Status		Tested	

4 K <u>self-field</u> testing demonstrated fast ramp rates with stable operation despite effects of magnetization and motion on voltages

depending on how inductance and motion are compensated.

16

Current (A)

Reasonable Screening Current Induced Field

Excess field max is 163 mT And decays over time of measurements at high field

Expected 0.102 mT/A Measured range 0.082 to 0.112 mT/A Median: 0.102 Average: 0.102

No performance change after fatigue cycles

Prototype OH CORC Solenoid Postmortem: So-far So-good

19

- No visible degradation, pinch points or significant conductor deformation
- Evidence of Lorentz forces by next layer impressions in the copper.
- Conductor removed from each layer without unbending
- Developing postmortem techniques for the next coils with higher stresses:
 - Control coil for comparison
 - Cross section images: secure, diamond wire saw, VPI, polish, tape centroid analysis, tape gap analysis

Inside terminal riser support

from bent coil turns (G. Murphy)

Multiple Key Results From Each High Field Coil Test

No signs of degradation from low-cycle fatigue

- Higher quench currents and apparent I_c after cycling
- High ramp rates are manageable
- Complex mix of phenomena in voltages
 - Further analysis needed to identify contributions:
 cable motion, strand motion, screening currents, contact resistance, current sharing, strand degradation, co-wound voltage-tap wire motion
 - Quench detection challenges
 (false positives, transient voltage spikes, change in current sharing dissipation, or local quenches)
 - Must be conservative on quench detection
 - We could benefit from alternative diagnostics to deconvolute behaviors
 - Matched inductance voltage taps significantly improve quench monitoring
 - The cable appears very stable, despite the dynamic behavior of the coil
- Screening currents are manageable Affect initial current distributions after background field is ramped and decay as expected
- Demonstrated feasibility of dry-wound cable magnet concept
- CORC Solenoids solenoid results confirmed by an uneventful postmortem investigation
 - Developing a control, techniques, and experience for subsequent CORC investigations

(>50 cycles, > 170 MPa)

Solenoid Program Opportunities

- Conductor development program into tight loop magnet testing
- Ultra-High-Field tests demonstrate key capabilities and limits of conductor and cable
- Unique large-bore test bed and supporting postmortem investigation cycle demonstrates how cables and solenoids act closer to operation in affordable tests
 - Rapidly test magnet designs and isolate phenomena
 - Low-cycle fatigue test magnets in closer to final operating conditions
 - Dedicated test articles: cables, joints, diagnostics and instrumentation...
 - Validate design and modelling: mechanical reinforcement and constraints, current sharing, screening, quench, etc..
- ASC has extensive postmortem investigation capabilities

161 mn

 Material science experts and equipment, Yatestar (Reel-Reel tape evaluation), light/SEM/TEM/MO microscopy capabilities (see Bi-2212 session Postmortem investigation talk for examples)

