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What's new?

@ Improvements have been made in MIND reconstruction.

» Multiple track reconstruction.
> Improved pattern recognition.
» MVA analysis.

e Engaged a Master's student (Steve Bramsiepe) to investigate usage
of MVA in vYSTORM.

@ Used the opportunity to check for improvements in SuperBIND
appearance (and disappearance) analysis.

» MVA analysis expected to lower energy threshold.
» Multiple track expected to reduce charge mis-ID from low angle
muon-like pions.
* Also allows selection based on the longest single track.
* Not the largest set of hits.
» Improved pattern recognition includes radial and z-ordering of hits in
event.
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Comparing LOI to Current Results
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@ Simulation assumes a 20 m long SuperBIND with 2 cm thick Fe

plates.

The efficiency is unchanged.

Neutral current and charge current backgrounds are reduced.
ve CC background is non-zero .

Total background is greater for new analysis.
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Comparing LOI to Current Results
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How Does This Affect the Sensitivity?

Comparison of 10 o Contours
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@ Matched multi-track reconstruction to LOI analysis as best as
possible.

@ Used response matrices developed for LOI as a basis of comparison.

o Difference likely due to increased v, CC background.

@ Relaxing cut reduces sensitivity.

Ryan Bayes (University of Glasgow)

vSTORM MVA Results

December 14, 2012 4 /14



Multi-variate Analysis

Allows the selection of signal given correlations between selection
variables.

Is a two pass analysis.

» Train using signal (i.e. v, CC) and background (i.e. ¥, CC mis ID or
7, NC) samples.
> Apply to arbitrary data sample.

Reduces selection of event to a one variable cut.
Includes a simple optimization algorithm based on significance.

Further optimization based on physics output is possible.
Consider three different methods
» kNN — k Nearest Neighbour

» BDT — Boosted Decision Tree
» MLP — An artificial neural network
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Cuts and Variable Definitions used in TMVA
Set of Fixed Cuts

@ At least one trajectory successfully fit.

° p,<16xE,

@ Track vertex before last 1 m of detector volume
o Fitted track includes >60% of candidate hits

Variable Definitions
C Uq/p/(q/p): Require |Uq/p/(q/P)| <20
@ Npjts used in fit for given trajectory.

Ro = (Ginit/ Pinit) % (pfit/qfit): Require R, >0

@ Mean energy loss over track (Z,N:”’(; AE;)/ Ny

@ Energy variation ratio Rysr = (Zil\io AE,-)/(X:JI.V:’”',K/,+1 AE;) where
AE; < AEj;1 and 2M =~ N.

@ Momentum: Require p, < 4 x EJ"®

v
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Variables Used in Analysis

Input variable: Track Quality

nput variable: His i Trajectory
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@ Shows the Correlations between variables and response
Slgnlflcance Signal Background
of Variab|eS KNN MLP BDT KNN MLP BDT
i ErrgP -0.187 -0.174 -0.010 -0.018 -0.046 +0.061
to analysis. trHits  +0.300  +0.298  +0.942 0578  -0.630  -0.952

Rp -0.096 -0.083 -0.332 +0.236 +0.210 +0.361
meanDep -0.193 -0.187 -0.365 +0.475 +0.447 +0.333
EngVar +0.129 +0.115 +0.198 -0.260 -0.230 -0.144
recMom +0.096 +0.109 +0.538 -0.171 -0.243 -0.530
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Efficiencies for Variable Optimization
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MVA Response for Future Optimization
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Efficiency for Optimized Methods
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Detector Response to BDT Method
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Sensitivity to Sterile Oscillations in an Appearance Analysis

Method comparison: CC trained Method comparison: NC trained
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@ BDT method shows a clear improvement over all other methods,
including LOI analysis.

KNN and MLP methods do not improve on LOI results.

Includes 1% signal and 10% background “normalization” errors.
Training with NC background samples performs better than with
" Physical” (primarily CC ) samples.
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Conclusions

@ Introduced changes into the reconstruction
» Allows for the reconstruction of multiple tracks
> Better selection of muon track.
» Potentially better energy reconstruction.
» Makes no change for YSTORM
@ Tested three different multi variate analysis methods.
> k-Nearest Neighbour method provides
* the best efficiency

* but poor background rejection.
* works better for a Neutrino Factory

» Boosted decision trees provide

* better efficiency than cuts based analysis
* and comparable background rejection

o BDT provides clear improvement in sensitivity to sterile oscillations.

@ Can add disappearance analysis if systematics are “known".
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One Final Thought

DIDTE-E&NJUSI'[-_‘)@LDDE’?
TS NIGHT, 50 WERE NOT SURE.)
Tﬂﬁmmm
WHETHER THE SUN HAS GONE NOVA.
( THEN, (TROWS TWO DICE. IF THEY
BOTH COME UP SIX, IT UES TO US:
OMHERWISE, 1T TELLS THE TRUTH.
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FREQUENTIST STRRSTICIAN: DAYESIAN STATISTICAN:

THE PROBABILITY OF THIS RESULT

HAFPENING BY CHANCE 15 3,=0027 BET YOU $50
SMCE p<0.05, T CONCILDE. T HASNT.
THAT THE SUN HAS EXPLODED. )
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