Atmospheric Neutrino Energy and Angle Reconstruction

Henrique Souza, Pierre Granger

06/11/2023

Energy reconstruction

- Last meeting slides: link
- CM slides: link
- Multiple Coulomb Scattering (MCS):
 - Why values are stopping before 10 GeV ?
 - Why MCS method is (slightly) overestimating the muon energy?
 - Why do we have a poor resolution?
 - What should be an appropriate threshold to choose range or mcs?

Understanding MCS method

- There are two methods of MCS, which I denote here Chi2 and LLHD (next slides)
- Chi2, examples of use: in Opera and ICARUS:
 - o <u>Opera</u>
 - <u>ICARUS</u>
- LLHD, examples of use in uboone and ProtoDUNE
 - o <u>uboone</u>
 - ProtoDUNE
- Current state of LArSoft:
 - Only Chi2 method is used.
 - LLHD is not fully implemented
 - Codes have basically no comments (took me a while to understand them)
- Outline:
 - How Chi2 and LLHD methods work
 - How they are implemented and results

How to retrieve momentum?

• Particle scattering is modeled with a Gaussian distribution centered at zero and RMS given by the Highland formula:

$$\theta_0 = \theta_{\text{plane}}^{\text{rms}} = \frac{1}{\sqrt{2}} \theta_{\text{space}}^{\text{rms}} ,$$

$$\theta_0 = \frac{13.6 \text{ MeV}}{\beta c p} z \sqrt{\frac{x}{X_0}} \left[1 + 0.038 \ln(\frac{x z^2}{X_0 \beta^2}) \right]$$
 Muons: z = 1
• LAr: Xo = 14 cm
• x: segment length

- Chi2:
 - Evaluates θ_0 (the rms of scattered angles) for different segment lengths
 - Find momentum by minimizing measurement vs expected value
- LLHD:
 - Evaluates the log-likelihood for each segments scattered angle and minimize it.
- More details in backup slides!

Implementation: Chi2 and LLHD

- First step (Common to Chi2 and LLHD):
 - Evaluate particle direction breaking into segments of fixed length
 - All space points inside a segment are stored for next step Segments of 1 cm for visualization

y (cm) Space points -250 Segments -252 -254 -256 -258 Compute direction by getting the eigenvector with biggest -260 eigenvalue of the Covariance matrix (Principal Component -262 Analysis (PCA)). -264 -266 -266 -264 -262 -250 -260 -258 -256 -254 -252 x (cm)

In the example:

Implementation: Second step – Chi2

- Second step (Chi2)
 - Evaluate the RMS for different segments lengths:

Remember:

Each blue point is the segment computed in the first step

Computes the scattered angle rms (θ_{o}^{RMS}) using 5 different points Computes the scattered angle rms (θ_{o}^{RMS}) using 4 different points Computes the scattered angle rms (θ_{o}^{RMS}) using 3 different points

In this example: we would have 3 points to fit

• The computation of rms is done twice.

- First time it takes all the points
- \circ A second one accepting only the points within 2.5 σ (98%)

• In current version of LArSoft:

- The segment length of 10 cm was hardcoded.
- The number of steps is hard coded to 6 (so 6 points to be fitted only)
- Only the xz-plane is been used
- (side note) A systematic uncertainty of 5% rms is added quadratically with the notes:
 "Systematic error to fix chi2 behaviour"

Implementation: Final step – Chi2

• Minimize:
$$\chi^2 = \sum_{i} \left(\frac{\theta_{\text{meas }i}^{\text{rms}} - \theta_{\text{theo }i}^{\text{rms}}}{\Delta \theta_{\text{meas }i}^{\text{rms}}} \right)$$

assuming:
$$(\theta_{\text{meas}}^{\text{rms}})^2 = (\theta_0^{\text{rms}})^2 + (\theta_{\text{noise}}^{\text{rms}})^2$$
,

- Assumes **Beta** = 1 for all energies
- The momentum and noise rms are fitted at the same time
 - There was a penalty added to chi2 as: Chi2 += 2 * $\theta_{\text{noise}}^{\text{rms}}$ /4.6
 - \circ $\,$ However, the noise rms was constrained between 0 to 45 mrad.

2

- This cause the fit to return rms noise << 10^-4 mrad (check backup slides)
- Momentum is constrained between 10 MeV and 7.5 GeV
- The energy lost by track was added at the end by
 - \circ taking the length at the last segment
 - times 2.4 MeV/cm
 - divided by two.

(Added to the momentum)

Changes in Chi2 method

• Trying to improve:

- Fix $\theta_{\text{noise}}^{\text{rms}}$ to 2 mrad (more study necessary)
- Removing penalty
- Changed upper limit from 7.5 to 80 GeV

- Change minimum length from 100 to 30 cm
- Increase to 18 segments, starting at 5 cm and steps of 2.5 cm

Changes in Chi2 method

• Trying to improve:

- Fix $\theta_{\text{noise}}^{\text{rms}}$ to 2 mrad (more study necessary)
- Removing penalty
- Changed upper limit from 7.5 to 80 GeV

- \circ $\,$ $\,$ Change minimum length from 100 to 30 cm $\,$
- Increase to 18 segments, starting at 5 cm and steps of 2.5 cm

Quick note (more examples as backup)

• I was expecting a similar plot to ICARUS:

• The result was this instead:

• Any comments on this?

Implementation: Last Steps LLHD

- Correction (LLHD)
 - Instead of using the formula:

$$\theta_0 = \frac{13.6 \text{ MeV}}{\beta c p} \ z \ \sqrt{\frac{x}{X_0}} \left[1 + 0.038 \ln(\frac{x \ z^2}{X_0 \beta^2}) \right]$$

Uboone paper present a simulation based tuning of the 13.6 MeV constant, replacing it by:

$$\kappa(p) = \frac{0.105 \text{ MeV}}{(p(\text{GeV}))^2} + 11.004 \text{ MeV}.$$

- Last step:
 - Minimize for all segments and $\Delta \theta_{xz}$ and $\Delta \theta_{yz}$. (More comments on this)
 - For each segment, compute the momentum considering the energy lost as 2.1 MeV/cm

$$-l(\sigma_{o,1},\ldots,\sigma_{o,n};\Delta\theta_1,\ldots,\Delta\theta_n) = -\ln(L) = \frac{n}{2}\ln(2\pi) + \sum_{j=1}^n \ln(\sigma_{o,j}) + \frac{1}{2}\sum_{j=1}^n \left(\frac{\Delta\theta_j}{\sigma_{o,j}}\right)^2$$

Implementation: comments on LLHD

In current version of LArSoft

- LLHD method is **partially** implemented. **The code as it is does not work.**
- We found the git repository from which the authors of the uboone paper derived their results:
 - <u>https://github.com/kaleko/KalekoAna/tree/master</u>
- Their version differed from current LArSoft by:
 - Applying a verification on hits to avoid invalid points (I recently added it to larreco)
 - Using both angles $\Delta \theta_{xz}$ and $\Delta \theta_{yz}$ to perform a fit
 - Keeping beta in analytical form as function of p and m (p/E = B/c) -> ...
 - Adding the tuning K(p) described on the paper
 - Scan values of p with steps of 10 MeV (no fit)

• What have I changed:

- Instead of scanning values, I implemented the minimization
- I set a different minimum momentum for each track depending on the number of segments. This is done to prevent p = 0 in the highland formula
 - Original code was returning 999999 to the fittier instead, making it not a smooth function and failing quite often.

Implementation: LLHD

• Result obtained with segments of 10 cm

For not contained tracks, check backup

Implementation: comments on LLHD

- LLHD was done using segments of 10 cm
- $\Delta \theta_{i}$ values are lower than expected from θ_{rms} .
- I was expecting this from uboone paper:

yz-plane as backup

Implementation: comments on LLHD

Using space angle (without $\sqrt{2}$) - $\Delta \theta_{\text{space}} = \sqrt{(\Delta \theta_{xz}^2 + \Delta \theta_{yz}^2)}$

 10°

10²

10¹

10⁰

107

reco. E (GeV)

 10^{1}

10⁰

 10^{2}

MCS method

- BACK TO Chi2
 - \circ $\,$ Try to use space angle $\,$

MCS method - Chi2 space angle

- Using $\Delta \theta_{space}$ (with $\sqrt{2}$ correction)
- and adding energy lost by track (instead of adding half of it to the momentum)

MCS method - Chi2 space angle

- Using $\Delta \theta_{space}$ (with $\sqrt{2}$ correction)
- and adding energy lost by track (instead of adding half of it to the momentum)

MCS method - Summary

- Multiple Coulomb Scattering (MCS):
 - Why values are stopping before 10 GeV ? (solved)
 - Why MCS is method is (slightly) overestimating the muon energy? ("solved", added energy)
 - Why we have a poor resolution? (solved, llhd has narrower response)
 - What should be an appropriate threshold to choose range or mcs? (forgot about it)
- Main points:
 - Why do we have smaller $\Delta \theta$?
 - (Chi2) why we add half of the energy lost to the momentum at the end?
 - (Chi2) Should tuning also be applied ?
 - \circ (LLHD) gaps in the tracks are interpolated to make segments of fixed size. These leads to very small Δθ that might impact the fit. Need to check if it improves
 - o (Chi2 and LLHD) plane or space angle?
- Ongoing (todo):
 - New sample of only CC numu and nue events, with flat En. distributions: half sample between 100 MeV to 10 GeV, and half from 100 MeV to 20 GeV
 - Small sample of muon only
 - Need to come to a conclusion of what method/parameters to use

Angle reconstruction

- First (very basic) version of angle reconstruction has been implemented
 - The producer can be run for nue or numu reconstruction
 - For numu:
 - it reconstructs the momentum of the neutrino using the direction of the longest track
 - For nue:
 - it uses the direction of the shower with the highest charge deposition
 - Output: is the normalized reconstruction directions

First implementation of angular reconstruction #70

្អា Open) hvsouza wants to merge 2 commits into DUNE:develop from hvsouza:angular_reco_dev ____

Backup

Implementation: Chi2 and LLHD

• First step (Common to Chi2 and LLHD):

 Compute direction by getting the eigenvector with biggest eigenvalue of the Covariance matrix (Principal Component Analysis (PCA)).

This is done in three dimension!

For all next steps:

- **z** coordinate becomes the particle direction **r**_{particle}
- **y** is taken by finding the normal between

 $\mathbf{r}_{\text{particle}}$ - \mathbf{x}_{TPC} plane

• **x** is the cross product between **y** and **z**

MCS method - How to retrieve momentum

 "For many small-angle scatters the net scattering and displacement distributions are Gaussian via the central limit theorem. Less frequent "hard" scatters produce non-Gaussian tails. These Coulomb scattering distributions are well-represented by the theory of Molière". The Highland formula for the scattering angle rms is:

$$\theta_0 = \theta_{\text{ plane}}^{\text{rms}} = \frac{1}{\sqrt{2}} \, \theta_{\text{space}}^{\text{rms}} \; ,$$

$$\theta_0 = \frac{13.6 \text{ MeV}}{\beta c p} \ z \ \sqrt{\frac{x}{X_0}} \left[1 + 0.038 \ln(\frac{x \ z^2}{X_0 \beta^2}) \right]$$

- Muons: z = 1
- LAr: Xo = 14 cm

MCS method - How to retrieve momentum

- Chi2:
 - Evaluates θ_0 (the rms of scattered angles) for different 'x' (segments)
 - Find momentum by minimizing measurement vs expected value

$$\begin{aligned} \theta_{0} &= \frac{13.6 \text{ MeV}}{\beta c p} \ z \ \sqrt{\frac{x}{X_{0}}} \left[1 + 0.038 \ln(\frac{x \ z^{2}}{X_{0} \beta^{2}}) \right] \\ \theta_{\text{meas}}^{\text{rms}} &= \sqrt{(\theta_{0}^{\text{rms}})^{2} + (\theta_{\text{noise}}^{\text{rms}})^{2}} \\ &= \left\{ \left(\frac{13.6 \text{ MeV}}{\beta c p} \ z \sqrt{\frac{l}{X_{0}}} \left[1 + 0.038 \ln\left(\frac{l}{X_{0}}\right) \right] \right)^{2} \\ &+ \left(C \cdot l^{-3/2} \right)^{2} \right\}^{1/2}, \end{aligned}$$
(3)

NOTE: For OPERA and uboone, the noise was fixed ~2 mrad

Implementation: Final step – Chi2

• Minimizing:

$$\chi^2 = \sum_{i} \left(\frac{\theta_{\text{meas }i}^{\text{rms}} - \theta_{\text{theo }i}^{\text{rms}}}{\Delta \theta_{\text{meas }i}^{\text{rms}}} \right)^2$$

• In current LArSoft:

$$\begin{aligned} \theta_{\rm meas}^{\rm rms} &= \sqrt{(\theta_0^{\rm rms})^2 + (\theta_{\rm noise}^{\rm rms})^2} \\ &= \left\{ \left(\frac{13.6 \,\,{\rm MeV}}{p} z \sqrt{\frac{l}{X_0}} \left[1 + 0.038 \ln \left(\frac{l}{X_0} \right) \right] \right)^2 \right. \\ &+ \left. \left. \left(\theta_{\rm noise}^{\rm rms} \right)^2 \right\}^{1/2} \end{aligned}$$

NOTE: Current version assumes Beta = 1 for all energies

- LLHD:
 - "The normal probability distribution for a scattering angle in either the x_0 or y_0 direction, $\Delta \theta$, with an expected Gaussian uncertainty σ_0 and mean of zero is given by":

$$f_X(\Delta\theta) = (2\pi\sigma_o^2)^{-\frac{1}{2}} \exp\left[-\frac{1}{2}\left(\frac{\Delta\theta}{\sigma_o}\right)^2\right]$$

• "Since energy is lost between segments along the track, σo increases for each angular measurement along the track. We therefore replace σ_{o} with $\sigma_{o,j}$, where j is an index representative of the segment. To obtain the likelihood, we take the product of f_{χ} ($\Delta \theta_{j}$) over all n of the $\Delta \theta_{j}$ segment-to-segment scatters along the track." The function to be minimized became:

$$L(\sigma_{o,1},\ldots,\sigma_{o,n};\Delta\theta_1,\ldots,\Delta\theta_n) = (2\pi)^{-\frac{n}{2}} \times \prod_{j=1}^n (\sigma_{o,j})^{-1} \times \exp\left[-\frac{1}{2}\sum_{j=1}^n \left(\frac{\Delta\theta_j}{\sigma_{o,j}}\right)^2\right]$$

$$\cdot l(\sigma_{o,1},\ldots,\sigma_{o,n};\Delta\theta_1,\ldots,\Delta\theta_n) = -\ln(L) = \frac{n}{2}\ln(2\pi) + \sum_{j=1}^n \ln(\sigma_{o,j}) + \frac{1}{2}\sum_{j=1}^n \left(\frac{\Delta\theta_j}{\sigma_{o,j}}\right)^2$$

Implementation: Second step – LLHD

- After getting the particle direction after each segment (<u>MCS method Implementation (Chi2 and LLHD</u>))
- Compute $\Delta \theta_{xz}$ and $\Delta \theta_{yz}$ for each segment.

• Link this in the formula to minimize:

$$-l(\sigma_{o,1},\ldots,\sigma_{o,n};\Delta\theta_1,\ldots,\Delta\theta_n) = -\ln(L) = \frac{n}{2}\ln(2\pi) + \sum_{j=1}^n \ln(\sigma_{o,j}) + \frac{1}{2}\sum_{j=1}^n \left(\frac{\Delta\theta_j}{\sigma_{o,j}}\right)^2$$

• For each step, computes $\sigma_{o,i}$ expected (next slide)

Implementation: comments on LLHD

- LLHD was done using **segments of 10 cm**.
- In one of my many attempts to debug, I noticed the that $\Delta \theta$ was usually lower then θ_{rms} .
- I tried to use the space angle, but I forgot $\sqrt{2}$
 - This confirmed second bullet and lead to an improved result
- I was expecting this from uboone paper:

 $\theta_0 = \theta_{\text{plane}}^{\text{rms}} = \frac{1}{\sqrt{2}} \theta_{\text{space}}^{\text{rms}},$

MCS method - Implementation (Chi2)

- Second step (Chi2)
 - Evaluate the RMS for different segments lengths:

MCS method - Changes in Chi2 method

- Trying to improve :
 - Fixing $heta_{
 m noise}^{
 m rms}$ to 2 mrad (more study necessary)
 - Removing penalty
 - Changed upper limit from 7.5 to 80 GeV

- \circ $\,$ Set minimum length to 30 cm $\,$
- Increase to 18 segments, starting at 5 cm and steps of 2.5 cm

MCS method - Changes in Chi2 method

- Trying to improve :
 - Fixing $heta_{
 m noise}^{
 m rms}$ to 2 mrad (more study necessary)
 - Removing penalty
 - Changed upper limit from 7.5 to 80 GeV

- \circ $\,$ Set minimum length to 30 cm $\,$
- Increase to 18 segments, starting at 5 cm and steps of 2.5 cm

MCS method - Changes in Chi2 method

- Trying to improve :
 - Fixing $heta_{
 m noise}^{
 m rms}$ to 2 mrad (more study necessary)
 - Removing penalty
 - Changed upper limit from 7.5 to 80 GeV

- \circ $\,$ Set minimum length to 30 cm $\,$
- Increase to 18 segments, starting at 5 cm and steps of 2.5 cm

MCS method - Quick note

• I was expecting a similar plot to ICARUS:

The result was this instead:

MCS method - Quick note

• I was expecting a similar plot to ICARUS:

MCS method - Quick note chi2

Backup

Example bad fitting of noise rms

MCS method - Implementation (LLHD)

• Result obtained with segments of 10 cm

MCS method - Comments on LLHD

• Using space angle (without $\sqrt{2}$) - $\Delta \theta_{\text{space}} = \sqrt{(\Delta \theta_{xz}^2 + \Delta \theta_{yz}^2)}$

Energy reconstruction - Lepton E. reconstruction (OLD)

40